To find $\frac{1}{\beta - \alpha}$, we first need to determine the range of the function $fog(x) = f(g(x))$.
1. Calculate $fog(x)$: \[ fog(x) = f\left(g(x)\right) = f\left(\frac{2 - 3x}{1 - x}\right) \] Substitute $g(x)$ into $f(x)$: \[ fog(x) = \frac{2\left(\frac{2 - 3x}{1 - x}\right) + 3}{5\left(\frac{2 - 3x}{1 - x}\right) + 2} \] Simplify the expression: \[ fog(x) = \frac{\frac{4 - 6x + 3 - 3x}{1 - x}}{\frac{10 - 15x + 2 - 2x}{1 - x}} = \frac{7 - 9x}{12 - 17x} \]
2. Determine the range of $fog(x)$ for $x \in [2, 4]$: - Calculate $fog(2)$: \[ fog(2) = \frac{7 - 9(2)}{12 - 17(2)} = \frac{7 - 18}{12 - 34} = \frac{-11}{-22} = \frac{1}{2} \] - Calculate $fog(4)$: \[ fog(4) = \frac{7 - 9(4)}{12 - 17(4)} = \frac{7 - 36}{12 - 68} = \frac{-29}{-56} = \frac{29}{56} \]
3. Identify $\alpha$ and $\beta$:
- The range of $fog(x)$ is $\left[\frac{1}{2}, \frac{29}{56}\right]$.
- Therefore, $\alpha = \frac{1}{2}$ and $\beta = \frac{29}{56}$.
4. Calculate $\frac{1}{\beta - \alpha}$: \[ \beta - \alpha = \frac{29}{56} - \frac{1}{2} = \frac{29}{56} - \frac{28}{56} = \frac{1}{56} \] \[ \frac{1}{\beta - \alpha} = \frac{1}{\frac{1}{56}} = 56 \] Therefore, the correct answer is (4) 56.
We are given two functions:
\[ f(x) = \frac{2x + 3}{5x + 2}, \quad g(x) = \frac{2 - 3x}{1 - x}. \] We must find the range of \( f(g(x)) \) for \( x \in [2, 4] \), and then compute \( \dfrac{1}{\beta - \alpha} \), where the range is \([\alpha, \beta]\).
Step 1: Compute \( f(g(x)) \).
\[ f(g(x)) = \frac{2g(x) + 3}{5g(x) + 2}. \] Substitute \( g(x) = \frac{2 - 3x}{1 - x} \): \[ f(g(x)) = \frac{2\left(\frac{2 - 3x}{1 - x}\right) + 3}{5\left(\frac{2 - 3x}{1 - x}\right) + 2}. \]
Step 2: Simplify the numerator and denominator.
Numerator: \[ 2\left(\frac{2 - 3x}{1 - x}\right) + 3 = \frac{4 - 6x + 3(1 - x)}{1 - x} = \frac{4 - 6x + 3 - 3x}{1 - x} = \frac{7 - 9x}{1 - x}. \] Denominator: \[ 5\left(\frac{2 - 3x}{1 - x}\right) + 2 = \frac{10 - 15x + 2(1 - x)}{1 - x} = \frac{10 - 15x + 2 - 2x}{1 - x} = \frac{12 - 17x}{1 - x}. \] So, \[ f(g(x)) = \frac{7 - 9x}{12 - 17x}. \]
Step 3: Find the range of \( f(g(x)) \) for \( x \in [2, 4] \).
Let \( y = \frac{7 - 9x}{12 - 17x} \).
We’ll find \(y\) at \(x = 2\) and \(x = 4\).
At \(x = 2\): \[ y = \frac{7 - 18}{12 - 34} = \frac{-11}{-22} = \frac{1}{2}. \] At \(x = 4\): \[ y = \frac{7 - 36}{12 - 68} = \frac{-29}{-56} = \frac{29}{56}. \]
Step 4: Check if \(f(g(x))\) is increasing or decreasing.
Compute derivative sign (optional quick check): \[ f(g(x)) = \frac{7 - 9x}{12 - 17x}, \] Differentiate: \[ \frac{d}{dx} = \frac{(-9)(12 - 17x) - (7 - 9x)(-17)}{(12 - 17x)^2} = \frac{-108 + 153x + 119 - 153x}{(12 - 17x)^2} = \frac{11}{(12 - 17x)^2} > 0. \] So the function is **increasing**. Hence, range = \([f(g(2)), f(g(4))] = [\frac{1}{2}, \frac{29}{56}]\).
Step 5: Compute \(\frac{1}{\beta - \alpha}\).
\[ \beta - \alpha = \frac{29}{56} - \frac{1}{2} = \frac{29}{56} - \frac{28}{56} = \frac{1}{56}. \] \[ \frac{1}{\beta - \alpha} = 56. \]
\[ \boxed{56} \]
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
