To find $\frac{1}{\beta - \alpha}$, we first need to determine the range of the function $fog(x) = f(g(x))$.
1. Calculate $fog(x)$: \[ fog(x) = f\left(g(x)\right) = f\left(\frac{2 - 3x}{1 - x}\right) \] Substitute $g(x)$ into $f(x)$: \[ fog(x) = \frac{2\left(\frac{2 - 3x}{1 - x}\right) + 3}{5\left(\frac{2 - 3x}{1 - x}\right) + 2} \] Simplify the expression: \[ fog(x) = \frac{\frac{4 - 6x + 3 - 3x}{1 - x}}{\frac{10 - 15x + 2 - 2x}{1 - x}} = \frac{7 - 9x}{12 - 17x} \]
2. Determine the range of $fog(x)$ for $x \in [2, 4]$: - Calculate $fog(2)$: \[ fog(2) = \frac{7 - 9(2)}{12 - 17(2)} = \frac{7 - 18}{12 - 34} = \frac{-11}{-22} = \frac{1}{2} \] - Calculate $fog(4)$: \[ fog(4) = \frac{7 - 9(4)}{12 - 17(4)} = \frac{7 - 36}{12 - 68} = \frac{-29}{-56} = \frac{29}{56} \]
3. Identify $\alpha$ and $\beta$:
- The range of $fog(x)$ is $\left[\frac{1}{2}, \frac{29}{56}\right]$.
- Therefore, $\alpha = \frac{1}{2}$ and $\beta = \frac{29}{56}$.
4. Calculate $\frac{1}{\beta - \alpha}$: \[ \beta - \alpha = \frac{29}{56} - \frac{1}{2} = \frac{29}{56} - \frac{28}{56} = \frac{1}{56} \] \[ \frac{1}{\beta - \alpha} = \frac{1}{\frac{1}{56}} = 56 \] Therefore, the correct answer is (4) 56.
We are given two functions:
\[ f(x) = \frac{2x + 3}{5x + 2}, \quad g(x) = \frac{2 - 3x}{1 - x}. \] We must find the range of \( f(g(x)) \) for \( x \in [2, 4] \), and then compute \( \dfrac{1}{\beta - \alpha} \), where the range is \([\alpha, \beta]\).
Step 1: Compute \( f(g(x)) \).
\[ f(g(x)) = \frac{2g(x) + 3}{5g(x) + 2}. \] Substitute \( g(x) = \frac{2 - 3x}{1 - x} \): \[ f(g(x)) = \frac{2\left(\frac{2 - 3x}{1 - x}\right) + 3}{5\left(\frac{2 - 3x}{1 - x}\right) + 2}. \]
Step 2: Simplify the numerator and denominator.
Numerator: \[ 2\left(\frac{2 - 3x}{1 - x}\right) + 3 = \frac{4 - 6x + 3(1 - x)}{1 - x} = \frac{4 - 6x + 3 - 3x}{1 - x} = \frac{7 - 9x}{1 - x}. \] Denominator: \[ 5\left(\frac{2 - 3x}{1 - x}\right) + 2 = \frac{10 - 15x + 2(1 - x)}{1 - x} = \frac{10 - 15x + 2 - 2x}{1 - x} = \frac{12 - 17x}{1 - x}. \] So, \[ f(g(x)) = \frac{7 - 9x}{12 - 17x}. \]
Step 3: Find the range of \( f(g(x)) \) for \( x \in [2, 4] \).
Let \( y = \frac{7 - 9x}{12 - 17x} \).
We’ll find \(y\) at \(x = 2\) and \(x = 4\).
At \(x = 2\): \[ y = \frac{7 - 18}{12 - 34} = \frac{-11}{-22} = \frac{1}{2}. \] At \(x = 4\): \[ y = \frac{7 - 36}{12 - 68} = \frac{-29}{-56} = \frac{29}{56}. \]
Step 4: Check if \(f(g(x))\) is increasing or decreasing.
Compute derivative sign (optional quick check): \[ f(g(x)) = \frac{7 - 9x}{12 - 17x}, \] Differentiate: \[ \frac{d}{dx} = \frac{(-9)(12 - 17x) - (7 - 9x)(-17)}{(12 - 17x)^2} = \frac{-108 + 153x + 119 - 153x}{(12 - 17x)^2} = \frac{11}{(12 - 17x)^2} > 0. \] So the function is **increasing**. Hence, range = \([f(g(2)), f(g(4))] = [\frac{1}{2}, \frac{29}{56}]\).
Step 5: Compute \(\frac{1}{\beta - \alpha}\).
\[ \beta - \alpha = \frac{29}{56} - \frac{1}{2} = \frac{29}{56} - \frac{28}{56} = \frac{1}{56}. \] \[ \frac{1}{\beta - \alpha} = 56. \]
\[ \boxed{56} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
