To solve for \( f(1) \), we first need to understand the given function \( f(x) = \int x^3 \sqrt{3-x^2} \, dx \).
Given: \( 5f(\sqrt{2}) = -4 \).
Let's try to find the integral of \( x^3 \sqrt{3-x^2} \). Begin by using a substitution method. Set \( u = 3 - x^2 \), then \( du = -2x \, dx \) or \( x \, dx = -\frac{1}{2} \, du \). Also, \( x^2 = 3 - u \), so \( x^3 = x(3-u) \).
Substituting this into the integral:
\[ f(x) = \int x^3 \sqrt{3-x^2} \, dx = \int x(3-u)\sqrt{u} \left(-\frac{1}{2} \right) \, du \]
Simplifying the integral further:
\[ = -\frac{1}{2} \int (3 - u)\sqrt{u} \, du = -\frac{1}{2} \left( \int 3\sqrt{u} \, du - \int u^{3/2} \, du \right) \]
Evaluating these integrals individually:
\[ \text{Integral of } 3\sqrt{u}: \int 3u^{1/2} \, du = 3 \cdot \frac{2}{3} u^{3/2} = 2u^{3/2} \]
\[ \text{Integral of } u^{3/2}: \int u^{3/2} \, du = \frac{2}{5} u^{5/2} \]
Putting these together:
\[ f(x) = -\frac{1}{2} \left( 2u^{3/2} - \frac{2}{5} u^{5/2} \right) = -\frac{1}{2} \left( 2(3-x^2)^{3/2} - \frac{2}{5} (3-x^2)^{5/2} \right) \]
Now, using the condition \( 5f(\sqrt{2}) = -4 \), we substitute \( x = \sqrt{2} \) in the expression:
\[ 5 \left( -\frac{1}{2} \left( 2(3-(\sqrt{2})^2)^{3/2} - \frac{2}{5} (3-(\sqrt{2})^2)^{5/2} \right) \right) = -4 \]
Simplifying within the conditions:
\[ u = 3 - (\sqrt{2})^2 = 1 \]
The expression then reduces to:
\[ 5 \left( -\frac{1}{2} \cdot \left( 2 \cdot 1^{3/2} - \frac{2}{5} \cdot 1^{5/2} \right) \right) = -4 \]
After simplifying and solving this, we find:
\[ 5 \left( -\frac{1}{2} \cdot \left(2 - \frac{2}{5} \right) \right) = -4 \]
This gives us the following calculation:
\[ f(\sqrt{2}) = \frac{4}{5} \]
Then find \( f(1) \).
Substituting \( x = 1 \):
\[ f(1) = -\frac{1}{2} \cdot (2 \cdot (3-1)^{3/2} - \frac{2}{5} \cdot (3-1)^{5/2}) \]
Evaluate:
\[ u = 2 \]
The expression becomes:
\[ -\frac{1}{2} \cdot (2 \cdot 2^{3/2} - \frac{2}{5} \cdot 2^{5/2}) = -\frac{6\sqrt{2}}{5} \]
The value of \( f(1) \) is \( -\frac{6\sqrt{2}}{5} \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.