Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
The problem asks to evaluate the determinant \(|(\lambda B + I)|\), where \(A\) is a given 3x3 matrix with \(|A| = -1\), \(I\) is the 3x3 identity matrix, and \(B\) is the inverse of the adjugate of a matrix product involving \(A\).
We will use the following properties of matrices and determinants for an \(n \times n\) matrix M:
Step 1: Find the value of \(\lambda\) using the given determinant of A.
The matrix A is given by \( A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \). We are given that \(|A| = -1\).
Let's calculate the determinant of A:
\[ |A| = \lambda(5 \cdot 2 - 6 \cdot (-1)) - 2(4 \cdot 2 - 6 \cdot 7) + 3(4 \cdot (-1) - 5 \cdot 7) \] \[ |A| = \lambda(10 + 6) - 2(8 - 42) + 3(-4 - 35) \] \[ |A| = 16\lambda - 2(-34) + 3(-39) \] \[ |A| = 16\lambda + 68 - 117 \] \[ |A| = 16\lambda - 49 \]We are given \(|A| = -1\), so:
\[ 16\lambda - 49 = -1 \] \[ 16\lambda = 48 \] \[ \lambda = 3 \]Step 2: Simplify the expression for the matrix B.
B is defined as the inverse of \(\text{adj}(A \cdot \text{adj}(A^2))\). Let \(C = A \cdot \text{adj}(A^2)\). Then \(B = (\text{adj}(C))^{-1}\).
Using the property \((\text{adj}(M))^{-1} = \frac{M}{|M|}\), we have:
\[ B = \frac{C}{|C|} = \frac{A \cdot \text{adj}(A^2)}{|A \cdot \text{adj}(A^2)|} \]First, let's simplify the numerator, \(A \cdot \text{adj}(A^2)\):
\[ A \cdot \text{adj}(A^2) = A \cdot (|A^2| \cdot (A^2)^{-1}) = A \cdot (|A|^2 \cdot (A^{-1})^2) = |A|^2 \cdot A \cdot A^{-1} \cdot A^{-1} = |A|^2 \cdot I \cdot A^{-1} = |A|^2 A^{-1} \]Next, let's simplify the denominator, \(|A \cdot \text{adj}(A^2)|\):
\[ |A \cdot \text{adj}(A^2)| = |A| \cdot |\text{adj}(A^2)| = |A| \cdot |A^2|^{3-1} = |A| \cdot |A^2|^2 = |A| \cdot (|A|^2)^2 = |A| \cdot |A|^4 = |A|^5 \]Now, substitute these simplified expressions back into the equation for B:
\[ B = \frac{|A|^2 A^{-1}}{|A|^5} = \frac{1}{|A|^3} A^{-1} \]Substitute the given value \(|A| = -1\):
\[ B = \frac{1}{(-1)^3} A^{-1} = \frac{1}{-1} A^{-1} = -A^{-1} \]Step 3: Evaluate the final expression \(|(\lambda B + I)|\).
We found \(\lambda = 3\) and \(B = -A^{-1}\). Substitute these into the expression:
\[ |(\lambda B + I)| = |(3(-A^{-1}) + I)| = |-3A^{-1} + I| \]To simplify this determinant, we can write \(I = A \cdot A^{-1}\):
\[ |-3A^{-1} + A \cdot A^{-1}| = |(-3I + A) \cdot A^{-1}| \]Using the property \(|MN| = |M||N|\):
\[ |A - 3I| \cdot |A^{-1}| = |A - 3I| \cdot \frac{1}{|A|} \]We have \(\lambda = 3\), so this is \(|A - \lambda I| \cdot \frac{1}{|A|}\).
Step 4: Calculate the determinant \(|A - \lambda I|\).
With \(\lambda = 3\), the matrix A is \( A = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \).
\[ A - \lambda I = A - 3I = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{pmatrix} \]Now, we compute its determinant:
\[ |A - 3I| = 0(2 \cdot (-1) - 6 \cdot (-1)) - 2(4 \cdot (-1) - 6 \cdot 7) + 3(4 \cdot (-1) - 2 \cdot 7) \] \[ |A - 3I| = 0 - 2(-4 - 42) + 3(-4 - 14) \] \[ |A - 3I| = -2(-46) + 3(-18) \] \[ |A - 3I| = 92 - 54 = 38 \]Step 5: Compute the final value.
\[ |(\lambda B + I)| = |A - 3I| \cdot \frac{1}{|A|} = 38 \cdot \frac{1}{-1} = -38 \]The value of \(|(\lambda B + I)|\) is -38.
First, we find the value of \( \lambda \) using \( |A| = -1 \): \[ |A| = \begin{vmatrix} \lambda & 2 & 3 4 & 5 & 6 7 & -1 & 2 \end{vmatrix} = \lambda(10 - (-6)) - 2(8 - 42) + 3(-4 - 35) = -1 \] \[ 16\lambda - 2(-34) + 3(-39) = -1 \] \[ 16\lambda + 68 - 117 = -1 \] \[ 16\lambda - 49 = -1 \implies 16\lambda = 48 \implies \lambda = 3 \] Given \( B^{-1} = \text{adj}(A \cdot \text{adj}(A^2)) \). Let \( C = A \cdot \text{adj}(A^2) \). We know \( A^2 \cdot \text{adj}(A^2) = |A^2| I = |A|^2 I = (-1)^2 I = I \). So, \( \text{adj}(A^2) = (A^2)^{-1} \).
Then \( C = A (A^2)^{-1} = A A^{-2} = A^{-1} \). Thus, \( B^{-1} = \text{adj}(A^{-1}) \).
Using the property \( \text{adj}(M^{-1}) = (\text{adj}(M))^{-1} \), we have \( B^{-1} = (\text{adj}(A))^{-1} \).
Therefore, \( B = \text{adj}(A) \). We need to find \( |\lambda B + I| = |3 \text{adj}(A) + I| \).
Let \( P = 3 \text{adj}(A) + I \). Then \( AP = A(3 \text{adj}(A) + I) = 3 A \text{adj}(A) + A = 3 |A| I + A = 3(-1) I + A = A - 3I \). \[ |AP| = |A - 3I| \] \[ |A| |P| = \begin{vmatrix} 3 - 3 & 2 & 3 4 & 5 - 3 & 6 7 & -1 & 2 - 3 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{vmatrix} \] \[ |A| |P| = 0(..) - 2(4(-1) - 6(7)) + 3(4(-1) - 2(7)) = -2(-4 - 42) + 3(-4 - 14) = -2(-46) + 3(-18) = 92 - 54 = 38 \] Since \( |A| = -1 \), we have \( (-1) |P| = 38 \), so \( |P| = -38 \).
Therefore, \( |\lambda B + I| = |P| = |-38| = 38 \).
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: