Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
The problem asks to evaluate the determinant \(|(\lambda B + I)|\), where \(A\) is a given 3x3 matrix with \(|A| = -1\), \(I\) is the 3x3 identity matrix, and \(B\) is the inverse of the adjugate of a matrix product involving \(A\).
We will use the following properties of matrices and determinants for an \(n \times n\) matrix M:
Step 1: Find the value of \(\lambda\) using the given determinant of A.
The matrix A is given by \( A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \). We are given that \(|A| = -1\).
Let's calculate the determinant of A:
\[ |A| = \lambda(5 \cdot 2 - 6 \cdot (-1)) - 2(4 \cdot 2 - 6 \cdot 7) + 3(4 \cdot (-1) - 5 \cdot 7) \] \[ |A| = \lambda(10 + 6) - 2(8 - 42) + 3(-4 - 35) \] \[ |A| = 16\lambda - 2(-34) + 3(-39) \] \[ |A| = 16\lambda + 68 - 117 \] \[ |A| = 16\lambda - 49 \]We are given \(|A| = -1\), so:
\[ 16\lambda - 49 = -1 \] \[ 16\lambda = 48 \] \[ \lambda = 3 \]Step 2: Simplify the expression for the matrix B.
B is defined as the inverse of \(\text{adj}(A \cdot \text{adj}(A^2))\). Let \(C = A \cdot \text{adj}(A^2)\). Then \(B = (\text{adj}(C))^{-1}\).
Using the property \((\text{adj}(M))^{-1} = \frac{M}{|M|}\), we have:
\[ B = \frac{C}{|C|} = \frac{A \cdot \text{adj}(A^2)}{|A \cdot \text{adj}(A^2)|} \]First, let's simplify the numerator, \(A \cdot \text{adj}(A^2)\):
\[ A \cdot \text{adj}(A^2) = A \cdot (|A^2| \cdot (A^2)^{-1}) = A \cdot (|A|^2 \cdot (A^{-1})^2) = |A|^2 \cdot A \cdot A^{-1} \cdot A^{-1} = |A|^2 \cdot I \cdot A^{-1} = |A|^2 A^{-1} \]Next, let's simplify the denominator, \(|A \cdot \text{adj}(A^2)|\):
\[ |A \cdot \text{adj}(A^2)| = |A| \cdot |\text{adj}(A^2)| = |A| \cdot |A^2|^{3-1} = |A| \cdot |A^2|^2 = |A| \cdot (|A|^2)^2 = |A| \cdot |A|^4 = |A|^5 \]Now, substitute these simplified expressions back into the equation for B:
\[ B = \frac{|A|^2 A^{-1}}{|A|^5} = \frac{1}{|A|^3} A^{-1} \]Substitute the given value \(|A| = -1\):
\[ B = \frac{1}{(-1)^3} A^{-1} = \frac{1}{-1} A^{-1} = -A^{-1} \]Step 3: Evaluate the final expression \(|(\lambda B + I)|\).
We found \(\lambda = 3\) and \(B = -A^{-1}\). Substitute these into the expression:
\[ |(\lambda B + I)| = |(3(-A^{-1}) + I)| = |-3A^{-1} + I| \]To simplify this determinant, we can write \(I = A \cdot A^{-1}\):
\[ |-3A^{-1} + A \cdot A^{-1}| = |(-3I + A) \cdot A^{-1}| \]Using the property \(|MN| = |M||N|\):
\[ |A - 3I| \cdot |A^{-1}| = |A - 3I| \cdot \frac{1}{|A|} \]We have \(\lambda = 3\), so this is \(|A - \lambda I| \cdot \frac{1}{|A|}\).
Step 4: Calculate the determinant \(|A - \lambda I|\).
With \(\lambda = 3\), the matrix A is \( A = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \).
\[ A - \lambda I = A - 3I = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{pmatrix} \]Now, we compute its determinant:
\[ |A - 3I| = 0(2 \cdot (-1) - 6 \cdot (-1)) - 2(4 \cdot (-1) - 6 \cdot 7) + 3(4 \cdot (-1) - 2 \cdot 7) \] \[ |A - 3I| = 0 - 2(-4 - 42) + 3(-4 - 14) \] \[ |A - 3I| = -2(-46) + 3(-18) \] \[ |A - 3I| = 92 - 54 = 38 \]Step 5: Compute the final value.
\[ |(\lambda B + I)| = |A - 3I| \cdot \frac{1}{|A|} = 38 \cdot \frac{1}{-1} = -38 \]The value of \(|(\lambda B + I)|\) is -38.
First, we find the value of \( \lambda \) using \( |A| = -1 \): \[ |A| = \begin{vmatrix} \lambda & 2 & 3 4 & 5 & 6 7 & -1 & 2 \end{vmatrix} = \lambda(10 - (-6)) - 2(8 - 42) + 3(-4 - 35) = -1 \] \[ 16\lambda - 2(-34) + 3(-39) = -1 \] \[ 16\lambda + 68 - 117 = -1 \] \[ 16\lambda - 49 = -1 \implies 16\lambda = 48 \implies \lambda = 3 \] Given \( B^{-1} = \text{adj}(A \cdot \text{adj}(A^2)) \). Let \( C = A \cdot \text{adj}(A^2) \). We know \( A^2 \cdot \text{adj}(A^2) = |A^2| I = |A|^2 I = (-1)^2 I = I \). So, \( \text{adj}(A^2) = (A^2)^{-1} \).
Then \( C = A (A^2)^{-1} = A A^{-2} = A^{-1} \). Thus, \( B^{-1} = \text{adj}(A^{-1}) \).
Using the property \( \text{adj}(M^{-1}) = (\text{adj}(M))^{-1} \), we have \( B^{-1} = (\text{adj}(A))^{-1} \).
Therefore, \( B = \text{adj}(A) \). We need to find \( |\lambda B + I| = |3 \text{adj}(A) + I| \).
Let \( P = 3 \text{adj}(A) + I \). Then \( AP = A(3 \text{adj}(A) + I) = 3 A \text{adj}(A) + A = 3 |A| I + A = 3(-1) I + A = A - 3I \). \[ |AP| = |A - 3I| \] \[ |A| |P| = \begin{vmatrix} 3 - 3 & 2 & 3 4 & 5 - 3 & 6 7 & -1 & 2 - 3 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{vmatrix} \] \[ |A| |P| = 0(..) - 2(4(-1) - 6(7)) + 3(4(-1) - 2(7)) = -2(-4 - 42) + 3(-4 - 14) = -2(-46) + 3(-18) = 92 - 54 = 38 \] Since \( |A| = -1 \), we have \( (-1) |P| = 38 \), so \( |P| = -38 \).
Therefore, \( |\lambda B + I| = |P| = |-38| = 38 \).
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.