Question:

Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______

Show Hint

Use the properties of adjoint and inverse of matrices, such as \( A \cdot \text{adj}(A) = |A| I \) and \( \text{adj}(A^{-1}) = (\text{adj}(A))^{-1} \), to simplify the expression for \( B \). Then, use the properties of determinants, such as \( |AB| = |A| |B| \), to find the value of \( |\lambda B + I| \). Be careful with matrix operations and determinant calculations.
Updated On: Nov 1, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 38

Approach Solution - 1

The problem asks to evaluate the determinant \(|(\lambda B + I)|\), where \(A\) is a given 3x3 matrix with \(|A| = -1\), \(I\) is the 3x3 identity matrix, and \(B\) is the inverse of the adjugate of a matrix product involving \(A\).

Concept Used:

We will use the following properties of matrices and determinants for an \(n \times n\) matrix M:

  • Determinant of a matrix.
  • \( \text{adj}(M) = |M| \cdot M^{-1} \)
  • \( |\text{adj}(M)| = |M|^{n-1} \)
  • \( (M^{-1})^{-1} = M \)
  • \( (\text{adj}(M))^{-1} = \frac{M}{|M|} \)
  • \( |MN| = |M| |N| \)
  • \( |M^{-1}| = \frac{1}{|M|} \)
  • \( |kM| = k^n |M| \), where \(k\) is a scalar.

Step-by-Step Solution:

Step 1: Find the value of \(\lambda\) using the given determinant of A.

The matrix A is given by \( A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \). We are given that \(|A| = -1\).

Let's calculate the determinant of A:

\[ |A| = \lambda(5 \cdot 2 - 6 \cdot (-1)) - 2(4 \cdot 2 - 6 \cdot 7) + 3(4 \cdot (-1) - 5 \cdot 7) \] \[ |A| = \lambda(10 + 6) - 2(8 - 42) + 3(-4 - 35) \] \[ |A| = 16\lambda - 2(-34) + 3(-39) \] \[ |A| = 16\lambda + 68 - 117 \] \[ |A| = 16\lambda - 49 \]

We are given \(|A| = -1\), so:

\[ 16\lambda - 49 = -1 \] \[ 16\lambda = 48 \] \[ \lambda = 3 \]

Step 2: Simplify the expression for the matrix B.

B is defined as the inverse of \(\text{adj}(A \cdot \text{adj}(A^2))\). Let \(C = A \cdot \text{adj}(A^2)\). Then \(B = (\text{adj}(C))^{-1}\).

Using the property \((\text{adj}(M))^{-1} = \frac{M}{|M|}\), we have:

\[ B = \frac{C}{|C|} = \frac{A \cdot \text{adj}(A^2)}{|A \cdot \text{adj}(A^2)|} \]

First, let's simplify the numerator, \(A \cdot \text{adj}(A^2)\):

\[ A \cdot \text{adj}(A^2) = A \cdot (|A^2| \cdot (A^2)^{-1}) = A \cdot (|A|^2 \cdot (A^{-1})^2) = |A|^2 \cdot A \cdot A^{-1} \cdot A^{-1} = |A|^2 \cdot I \cdot A^{-1} = |A|^2 A^{-1} \]

Next, let's simplify the denominator, \(|A \cdot \text{adj}(A^2)|\):

\[ |A \cdot \text{adj}(A^2)| = |A| \cdot |\text{adj}(A^2)| = |A| \cdot |A^2|^{3-1} = |A| \cdot |A^2|^2 = |A| \cdot (|A|^2)^2 = |A| \cdot |A|^4 = |A|^5 \]

Now, substitute these simplified expressions back into the equation for B:

\[ B = \frac{|A|^2 A^{-1}}{|A|^5} = \frac{1}{|A|^3} A^{-1} \]

Substitute the given value \(|A| = -1\):

\[ B = \frac{1}{(-1)^3} A^{-1} = \frac{1}{-1} A^{-1} = -A^{-1} \]

Step 3: Evaluate the final expression \(|(\lambda B + I)|\).

We found \(\lambda = 3\) and \(B = -A^{-1}\). Substitute these into the expression:

\[ |(\lambda B + I)| = |(3(-A^{-1}) + I)| = |-3A^{-1} + I| \]

To simplify this determinant, we can write \(I = A \cdot A^{-1}\):

\[ |-3A^{-1} + A \cdot A^{-1}| = |(-3I + A) \cdot A^{-1}| \]

Using the property \(|MN| = |M||N|\):

\[ |A - 3I| \cdot |A^{-1}| = |A - 3I| \cdot \frac{1}{|A|} \]

We have \(\lambda = 3\), so this is \(|A - \lambda I| \cdot \frac{1}{|A|}\).

Step 4: Calculate the determinant \(|A - \lambda I|\).

With \(\lambda = 3\), the matrix A is \( A = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} \).

\[ A - \lambda I = A - 3I = \begin{pmatrix} 3 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{pmatrix} \]

Now, we compute its determinant:

\[ |A - 3I| = 0(2 \cdot (-1) - 6 \cdot (-1)) - 2(4 \cdot (-1) - 6 \cdot 7) + 3(4 \cdot (-1) - 2 \cdot 7) \] \[ |A - 3I| = 0 - 2(-4 - 42) + 3(-4 - 14) \] \[ |A - 3I| = -2(-46) + 3(-18) \] \[ |A - 3I| = 92 - 54 = 38 \]

Step 5: Compute the final value.

\[ |(\lambda B + I)| = |A - 3I| \cdot \frac{1}{|A|} = 38 \cdot \frac{1}{-1} = -38 \]

The value of \(|(\lambda B + I)|\) is -38.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

First, we find the value of \( \lambda \) using \( |A| = -1 \): \[ |A| = \begin{vmatrix} \lambda & 2 & 3 4 & 5 & 6 7 & -1 & 2 \end{vmatrix} = \lambda(10 - (-6)) - 2(8 - 42) + 3(-4 - 35) = -1 \] \[ 16\lambda - 2(-34) + 3(-39) = -1 \] \[ 16\lambda + 68 - 117 = -1 \] \[ 16\lambda - 49 = -1 \implies 16\lambda = 48 \implies \lambda = 3 \] Given \( B^{-1} = \text{adj}(A \cdot \text{adj}(A^2)) \). Let \( C = A \cdot \text{adj}(A^2) \). We know \( A^2 \cdot \text{adj}(A^2) = |A^2| I = |A|^2 I = (-1)^2 I = I \). So, \( \text{adj}(A^2) = (A^2)^{-1} \). 
Then \( C = A (A^2)^{-1} = A A^{-2} = A^{-1} \). Thus, \( B^{-1} = \text{adj}(A^{-1}) \). 
Using the property \( \text{adj}(M^{-1}) = (\text{adj}(M))^{-1} \), we have \( B^{-1} = (\text{adj}(A))^{-1} \). 
Therefore, \( B = \text{adj}(A) \). We need to find \( |\lambda B + I| = |3 \text{adj}(A) + I| \). 
Let \( P = 3 \text{adj}(A) + I \). Then \( AP = A(3 \text{adj}(A) + I) = 3 A \text{adj}(A) + A = 3 |A| I + A = 3(-1) I + A = A - 3I \). \[ |AP| = |A - 3I| \] \[ |A| |P| = \begin{vmatrix} 3 - 3 & 2 & 3 4 & 5 - 3 & 6 7 & -1 & 2 - 3 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{vmatrix} \] \[ |A| |P| = 0(..) - 2(4(-1) - 6(7)) + 3(4(-1) - 2(7)) = -2(-4 - 42) + 3(-4 - 14) = -2(-46) + 3(-18) = 92 - 54 = 38 \] Since \( |A| = -1 \), we have \( (-1) |P| = 38 \), so \( |P| = -38 \). 
Therefore, \( |\lambda B + I| = |P| = |-38| = 38 \).

Was this answer helpful?
0
0