Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
First, we find the value of \( \lambda \) using \( |A| = -1 \): \[ |A| = \begin{vmatrix} \lambda & 2 & 3 4 & 5 & 6 7 & -1 & 2 \end{vmatrix} = \lambda(10 - (-6)) - 2(8 - 42) + 3(-4 - 35) = -1 \] \[ 16\lambda - 2(-34) + 3(-39) = -1 \] \[ 16\lambda + 68 - 117 = -1 \] \[ 16\lambda - 49 = -1 \implies 16\lambda = 48 \implies \lambda = 3 \] Given \( B^{-1} = \text{adj}(A \cdot \text{adj}(A^2)) \). Let \( C = A \cdot \text{adj}(A^2) \). We know \( A^2 \cdot \text{adj}(A^2) = |A^2| I = |A|^2 I = (-1)^2 I = I \). So, \( \text{adj}(A^2) = (A^2)^{-1} \).
Then \( C = A (A^2)^{-1} = A A^{-2} = A^{-1} \). Thus, \( B^{-1} = \text{adj}(A^{-1}) \).
Using the property \( \text{adj}(M^{-1}) = (\text{adj}(M))^{-1} \), we have \( B^{-1} = (\text{adj}(A))^{-1} \).
Therefore, \( B = \text{adj}(A) \). We need to find \( |\lambda B + I| = |3 \text{adj}(A) + I| \).
Let \( P = 3 \text{adj}(A) + I \). Then \( AP = A(3 \text{adj}(A) + I) = 3 A \text{adj}(A) + A = 3 |A| I + A = 3(-1) I + A = A - 3I \). \[ |AP| = |A - 3I| \] \[ |A| |P| = \begin{vmatrix} 3 - 3 & 2 & 3 4 & 5 - 3 & 6 7 & -1 & 2 - 3 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 \\ 4 & 2 & 6 \\ 7 & -1 & -1 \end{vmatrix} \] \[ |A| |P| = 0(..) - 2(4(-1) - 6(7)) + 3(4(-1) - 2(7)) = -2(-4 - 42) + 3(-4 - 14) = -2(-46) + 3(-18) = 92 - 54 = 38 \] Since \( |A| = -1 \), we have \( (-1) |P| = 38 \), so \( |P| = -38 \).
Therefore, \( |\lambda B + I| = |P| = |-38| = 38 \).
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below: