The \( n^{th} \) term of the series (for \( n \ge 1 \)) is given by:
\[
T_n = \frac{1 + 3 + 5 + \dots + (2n - 1)}{n!}
\]
The sum of the first \( n \) odd numbers is \( n^2 \). So, the numerator is \( n^2 \).
\[
T_n = \frac{n^2}{n!}
\]
The given sum \( S \) can be written as:
\[
S = 1 + \sum_{n=2}^{\infty} \frac{n^2}{n!} = \sum_{n=1}^{\infty} \frac{n^2}{n!}
\]
We can write \( n^2 = n(n - 1) + n \).
\[
S = \sum_{n=1}^{\infty} \frac{n(n - 1) + n}{n!} = \sum_{n=1}^{\infty} \frac{n(n - 1)}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!}
\]
For the first sum, the terms for \( n = 1 \) are zero. So, we start from \( n = 2 \):
\[
\sum_{n=2}^{\infty} \frac{n(n - 1)}{n!} = \sum_{n=2}^{\infty} \frac{n(n - 1)}{n(n - 1)(n - 2)!} = \sum_{n=2}^{\infty} \frac{1}{(n - 2)!}
\]
Let \( m = n - 2 \). When \( n = 2 \), \( m = 0 \). When \( n \rightarrow \infty \), \( m \rightarrow \infty \).
\[
\sum_{m=0}^{\infty} \frac{1}{m!} = e
\]
For the second sum:
\[
\sum_{n=1}^{\infty} \frac{n}{n!} = \sum_{n=1}^{\infty} \frac{n}{n(n - 1)!} = \sum_{n=1}^{\infty} \frac{1}{(n - 1)!}
\]
Let \( k = n - 1 \). When \( n = 1 \), \( k = 0 \). When \( n \rightarrow \infty \), \( k \rightarrow \infty \).
\[
\sum_{k=0}^{\infty} \frac{1}{k!} = e
\]
Therefore, the sum \( S \) is:
\[
S = e + e = 2e
\]