If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Given \( p = \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} \). This limit is of the form \( 1^\infty \), so we can use the formula \( \lim_{x \to a} [f(x)]^{g(x)} = e^{\lim_{x \to a} g(x) [f(x) - 1]} \).
Here, \( f(x) = \frac{\tan x}{x} \) and \( g(x) = \frac{1}{x^2} \). \[ \log_e p = \lim_{x \to 0} \frac{1}{x^2} \left( \frac{\tan x}{x} - 1 \right) = \lim_{x \to 0} \frac{\tan x - x}{x^3} \] Using the Taylor series expansion for \( \tan x \) around \( x = 0 \): \[ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots \] \[ \log_e p = \lim_{x \to 0} \frac{(x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots) - x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3} + \frac{2x^5}{15} + \dots}{x^3} \] \[ \log_e p = \lim_{x \to 0} \left( \frac{1}{3} + \frac{2x^2}{15} + \dots \right) = \frac{1}{3} \] So, \( \log_e p = \frac{1}{3} \). We need to find \( 96 \log_e p \): \[ 96 \log_e p = 96 \times \frac{1}{3} = 32 \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).