If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Given \( p = \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} \). This limit is of the form \( 1^\infty \), so we can use the formula \( \lim_{x \to a} [f(x)]^{g(x)} = e^{\lim_{x \to a} g(x) [f(x) - 1]} \).
Here, \( f(x) = \frac{\tan x}{x} \) and \( g(x) = \frac{1}{x^2} \). \[ \log_e p = \lim_{x \to 0} \frac{1}{x^2} \left( \frac{\tan x}{x} - 1 \right) = \lim_{x \to 0} \frac{\tan x - x}{x^3} \] Using the Taylor series expansion for \( \tan x \) around \( x = 0 \): \[ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots \] \[ \log_e p = \lim_{x \to 0} \frac{(x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots) - x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3} + \frac{2x^5}{15} + \dots}{x^3} \] \[ \log_e p = \lim_{x \to 0} \left( \frac{1}{3} + \frac{2x^2}{15} + \dots \right) = \frac{1}{3} \] So, \( \log_e p = \frac{1}{3} \). We need to find \( 96 \log_e p \): \[ 96 \log_e p = 96 \times \frac{1}{3} = 32 \]
The integral $ \int_{0}^{\pi} \frac{8x dx}{4 \cos^2 x + \sin^2 x} $ is equal to
Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)