Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
\[\begin{align*} (x^2 + 2x)(12 - k) &= 2 \\ \text{Let } \lambda &= 12 - k \quad \Rightarrow \quad (x^2 + 2x)\lambda = 2 \\ \Rightarrow \lambda x^2 + 2\lambda x - 2 &= 0 \qquad \text{(Quadratic in } x \text{, valid if } k \ne 12 \text{)} \\ \text{Discriminant: } D &= (2\lambda)^2 + 4\lambda \cdot 2 = 4\lambda^2 + 8\lambda \\ \text{Set } D = 0 \text{ for equal roots:} \\ 4\lambda^2 + 8\lambda &= 0 \\ \Rightarrow \lambda( \lambda + 2 ) &= 0 \\ \Rightarrow \lambda = 0 \text{ or } \lambda = -2 \end{align*}\]
\[\begin{align*} \text{If } \lambda = -2, \text{ then } 12 - k &= -2 \Rightarrow k = 14 \end{align*}\]
\[ \therefore P(k) = \left(14, \frac{7}{2} \right) \]
\( \text{Now calculate } d = \frac{3 \times 14 + 4 \times 7 + 5}{5} = \frac{42 + 28 + 5}{5} = \frac{75}{5} = 15 \)
\( \text{Correct option: (1)} \)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Consider the lines $ x(3\lambda + 1) + y(7\lambda + 2) = 17\lambda + 5 $. If P is the point through which all these lines pass and the distance of L from the point $ Q(3, 6) $ is \( d \), then the distance of L from the point \( (3, 6) \) is \( d \), then the value of \( d^2 \) is
Match List-I with List-II: List-I