Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
\[\begin{align*} (x^2 + 2x)(12 - k) &= 2 \\ \text{Let } \lambda &= 12 - k \quad \Rightarrow \quad (x^2 + 2x)\lambda = 2 \\ \Rightarrow \lambda x^2 + 2\lambda x - 2 &= 0 \qquad \text{(Quadratic in } x \text{, valid if } k \ne 12 \text{)} \\ \text{Discriminant: } D &= (2\lambda)^2 + 4\lambda \cdot 2 = 4\lambda^2 + 8\lambda \\ \text{Set } D = 0 \text{ for equal roots:} \\ 4\lambda^2 + 8\lambda &= 0 \\ \Rightarrow \lambda( \lambda + 2 ) &= 0 \\ \Rightarrow \lambda = 0 \text{ or } \lambda = -2 \end{align*}\]
\[\begin{align*} \text{If } \lambda = -2, \text{ then } 12 - k &= -2 \Rightarrow k = 14 \end{align*}\]
\[ \therefore P(k) = \left(14, \frac{7}{2} \right) \]
\( \text{Now calculate } d = \frac{3 \times 14 + 4 \times 7 + 5}{5} = \frac{42 + 28 + 5}{5} = \frac{75}{5} = 15 \)
\( \text{Correct option: (1)} \)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: