Let the angle with the positive x-axis be \( \alpha \).
\(\text{Given, } \beta = \frac{\alpha}{2} \text{ and } \gamma = \frac{\alpha}{2}. \)
\(\text{We know that } \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1. \)
\(\text{Substituting the values of } \beta \text{ and } \gamma: \)
\(\cos^2 \alpha + \cos^2 \left( \frac{\alpha}{2} \right) + \cos^2 \left( \frac{\alpha}{2} \right) = 1 \)
\(\Rightarrow \cos^2 \alpha + 2 \cos^2 \left( \frac{\alpha}{2} \right) = 1 \)
\(\text{Using the identity } \cos \alpha = 2 \cos^2 \left( \frac{\alpha}{2} \right) - 1, \text{ we get } \)
\(2 \cos^2 \left( \frac{\alpha}{2} \right) = \cos \alpha + 1 \)
\(\text{So,} \)
\(\cos^2 \alpha + \cos \alpha + 1 = 1 \)
\(\Rightarrow \cos^2 \alpha + \cos \alpha = 0 \)
\(\Rightarrow \cos \alpha (\cos \alpha + 1) = 0 \)
\(\text{This gives } \cos \alpha = 0 \text{ or } \cos \alpha = -1. \)
Case 1:
\(\cos \alpha = 0 \)
\(\Rightarrow \alpha = \frac{\pi}{2} \text{ or } \alpha = \frac{3\pi}{2} \)
\(\text{Since the angles are with the positive axes, } 0 \le \alpha, \beta, \gamma \le \pi. \)
\(\text{If } \alpha = \frac{\pi}{2}, \text{ then } \beta = \frac{\pi}{4} \)
\(\text{If } \alpha = \frac{3\pi}{2}, \text{ this is not possible as } \beta = \frac{3\pi}{4} \text{ and } \gamma = \frac{3\pi}{4}, \)
\(\text{leading to } \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 0 + \frac{1}{2} + \frac{1}{2} = 1. \)
Case 2:
\(\cos \alpha = -1 \)
\(\Rightarrow \alpha = \pi \)
\(\Rightarrow \beta = \frac{\pi}{2}, \quad \gamma = \frac{\pi}{2} \)
\(\Rightarrow \cos^2 \pi + \cos^2 \frac{\pi}{2} + \cos^2 \frac{\pi}{2} = 1 + 0 + 0 = 1 \)
\(\text{Possible values of } \beta \text{ are } \frac{\pi}{4} \text{ and } \frac{\pi}{2}. \)
\(\text{Sum of possible values of } \beta = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: