Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
To solve for the number of points of local maxima and minima of the function \( f(x) = \left||x+2| - 2|x|\right| \), we must first understand how the function behaves across the real numbers.
Thus, counting all such critical points, the number of points of local maxima and minima is 3.
The correct answer is therefore 3.
\( f(x) = ||x+2| - 2|x|| \) Critical points are \( 0, -2, -\frac{2}{3} \)
No. of maxima = 1 No. of minima = 2 m = 1, n = 2 m + n = 1 + 2 = 3
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]