Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
To solve for the number of points of local maxima and minima of the function \( f(x) = \left||x+2| - 2|x|\right| \), we must first understand how the function behaves across the real numbers.
Thus, counting all such critical points, the number of points of local maxima and minima is 3.
The correct answer is therefore 3.
\( f(x) = ||x+2| - 2|x|| \) Critical points are \( 0, -2, -\frac{2}{3} \)
No. of maxima = 1 No. of minima = 2 m = 1, n = 2 m + n = 1 + 2 = 3
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.