Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
\( f(x) = ||x+2| - 2|x|| \) Critical points are \( 0, -2, -\frac{2}{3} \)
No. of maxima = 1 No. of minima = 2 m = 1, n = 2 m + n = 1 + 2 = 3
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: