Consider the lines $ x(3\lambda + 1) + y(7\lambda + 2) = 17\lambda + 5 $. If P is the point through which all these lines pass and the distance of L from the point $ Q(3, 6) $ is \( d \), then the distance of L from the point \( (3, 6) \) is \( d \), then the value of \( d^2 \) is
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
Match List-I with List-II: List-I