Let the integral be \( I \):
\[
I = \int_{0}^{\pi} \frac{8x}{4 \cos^2 x + \sin^2 x} dx
\]
Using the property \( \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \):
\[
I = \int_{0}^{\pi} \frac{8(\pi - x)}{4 \cos^2 (\pi - x) + \sin^2 (\pi - x)} dx
\]
\[
I = \int_{0}^{\pi} \frac{8(\pi - x)}{4 (-\cos x)^2 + (\sin x)^2} dx
\]
\[
I = \int_{0}^{\pi} \frac{8(\pi - x)}{4 \cos^2 x + \sin^2 x} dx
\]
Adding the two expressions for \( I \):
\[
2I = \int_{0}^{\pi} \frac{8x + 8(\pi - x)}{4 \cos^2 x + \sin^2 x} dx
\]
\[
2I = \int_{0}^{\pi} \frac{8x + 8\pi - 8x}{4 \cos^2 x + \sin^2 x} dx
\]
\[
2I = \int_{0}^{\pi} \frac{8\pi}{4 \cos^2 x + \sin^2 x} dx
\]
\[
2I = 8\pi \int_{0}^{\pi} \frac{1}{4 \cos^2 x + \sin^2 x} dx
\]
Divide numerator and denominator by \( \cos^2 x \):
\[
2I = 8\pi \int_{0}^{\pi} \frac{\sec^2 x}{4 + \tan^2 x} dx
\]
Since the integrand has a period of \( \pi \), we can write:
\[
2I = 8\pi \times 2 \int_{0}^{\pi/2} \frac{\sec^2 x}{4 + \tan^2 x} dx
\]
Let \( t = \tan x \), so \( dt = \sec^2 x dx \). When \( x = 0 \), \( t = 0 \). When \( x = \pi/2 \), \( t \rightarrow \infty \).
\[
2I = 16\pi \int_{0}^{\infty} \frac{dt}{4 + t^2}
\]
\[
2I = 16\pi \times \frac{1}{2} \left[ \tan^{-1} \left( \frac{t}{2} \right) \right]_{0}^{\infty}
\]
\[
2I = 8\pi \left( \tan^{-1} (\infty) - \tan^{-1} (0) \right)
\]
\[
2I = 8\pi \left( \frac{\pi}{2} - 0 \right)
\]
\[
2I = 4\pi^2
\]
\[
I = 2\pi^2
\]
The integral is equal to \( 2\pi^2 \).