Let \( f(x) = \frac{2 - \sqrt{x + 4}}{\sin 2x}, \, x \neq 0 \). In order that \( f(x) \) is continuous at \( x = 0 \), \( f(0) \) is to be defined as:
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to
Let \( F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \), where \( \alpha \in \mathbb{R} \). Then \( [F(\alpha)]^{-1} \) is equal to: