Given:
\[ \frac{2 - x}{3} = \frac{3y - 2}{4\lambda + 1} = 4 - z \tag{1} \]
From equation (1), we have:
\[ \frac{x - 2}{-3} = \frac{y - 2}{3} = \frac{z - 4}{-1} \]
Now consider the second line:
\[ \frac{x + 3}{3\mu} = \frac{1 - 2y}{6} = \frac{5 - z}{7} \tag{2} \]
From equation (2), we have:
\[ \frac{x + 3}{3\mu} = \frac{y - \frac{1}{2}}{-3} = \frac{z - 5}{-7} \]
Since the lines are perpendicular, their direction ratios should satisfy:
\[ (-3)(3\mu) + (4\lambda + 1)(-1) + (-1)(-7) = 0 \]
Expanding this:
\[ -9\mu - 4\lambda - 1 + 7 = 0 \] \[ 4\lambda + 9\mu = 6 \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).