Given:
\( f(x) = x^5 + 2x^3 + 3x + 1 \)
Then,
\( f'(x) = 5x^4 + 6x^2 + 3 \)
Calculate \( f'(1) \):
\( f'(1) = 5 \cdot 1^4 + 6 \cdot 1^2 + 3 = 14 \)
Since \( g(f(x)) = x \), by differentiation, we get:
\( g'(f(x))f'(x) = 1 \)
For \( f(x) = 7 \):
\( x^5 + 2x^3 + 3x + 1 = 7 \)
This implies \( x = 1 \), so \( f(1) = 7 \).
Then \( g(7) = 1 \).
Now,
\( g'(7)f'(1) = 1 \Rightarrow g'(7) = \frac{1}{f'(1)} = \frac{1}{14} \)
Thus, \[ \frac{g(7)}{g'(7)} = \frac{1}{\frac{1}{14}} = 14 \]