Given:
\( f(x) = x^5 + 2x^3 + 3x + 1 \)
Then,
\( f'(x) = 5x^4 + 6x^2 + 3 \)
Calculate \( f'(1) \):
\( f'(1) = 5 \cdot 1^4 + 6 \cdot 1^2 + 3 = 14 \)
Since \( g(f(x)) = x \), by differentiation, we get:
\( g'(f(x))f'(x) = 1 \)
For \( f(x) = 7 \):
\( x^5 + 2x^3 + 3x + 1 = 7 \)
This implies \( x = 1 \), so \( f(1) = 7 \).
Then \( g(7) = 1 \).
Now,
\( g'(7)f'(1) = 1 \Rightarrow g'(7) = \frac{1}{f'(1)} = \frac{1}{14} \)
Thus, \[ \frac{g(7)}{g'(7)} = \frac{1}{\frac{1}{14}} = 14 \]
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 