The dot product of \(\vec{a}\) and \(\vec{b}\) is:
\[ \vec{a} \cdot \vec{b} = \alpha t + 6(-2) + (-3)(-2\alpha t) = \alpha t - 12 + 6\alpha t. \]
\[ \vec{a} \cdot \vec{b} = (\alpha + 6\alpha)t - 12 = 7\alpha t - 12. \]
For the angle to be obtuse:
\[ \vec{a} \cdot \vec{b} < 0. \]
This gives:
\[ 7\alpha t - 12 < 0 \implies t(7\alpha) - 12 < 0. \]
For all \(t \in \mathbb{R}\), this inequality holds only if:
\[ \alpha < 0 \quad \text{and} \quad -12 < 0. \]
To ensure obtuse angles:
\[ -\frac{4}{3} < \alpha < 0. \]
Final Answer: \((- \frac{4}{3}, 0)\).
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).