Question:

The set of all α, for which the vectors $\vec{a} = \alpha \hat{ti} + 6\hat{j} - 3\hat{k}$ and $\vec{b} = \hat{ti} - 2\hat{j} - 2\alpha t\hat{k}$ are inclined at an obtuse angle for all $t \in \mathbb{R}$ is:

Updated On: Mar 20, 2025
  • [0,1)
  • (-2,0]
  • $\left[-\frac{4}{3}, 0\right]$
  • $\left[-\frac{4}{3}, 1\right]$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The dot product of \(\vec{a}\) and \(\vec{b}\) is:
\[ \vec{a} \cdot \vec{b} = \alpha t + 6(-2) + (-3)(-2\alpha t) = \alpha t - 12 + 6\alpha t. \]
\[ \vec{a} \cdot \vec{b} = (\alpha + 6\alpha)t - 12 = 7\alpha t - 12. \]
For the angle to be obtuse:
\[ \vec{a} \cdot \vec{b} < 0. \]
This gives:
\[ 7\alpha t - 12 < 0 \implies t(7\alpha) - 12 < 0. \]
For all \(t \in \mathbb{R}\), this inequality holds only if:
\[ \alpha < 0 \quad \text{and} \quad -12 < 0. \]
To ensure obtuse angles:
\[ -\frac{4}{3} < \alpha < 0. \]
Final Answer: \((- \frac{4}{3}, 0)\).

Was this answer helpful?
0
0