Solution: For the function \( f(x) \) to be continuous at \( x = 0 \), we must have:
\[ \lim_{x \to 0} f(x) = f(0). \]
Calculating the limit on the left-hand side for \( x \to 0 \), we get:
\[ \lim_{x \to 0} \frac{72x^2 - 9x - 8x^2 + 1}{\sqrt{2} - \sqrt{1 + \cos x}}. \]
Using L’Hôpital’s Rule, we evaluate this limit step-by-step, and find that:
\[ f(0) = a \ln e \, 2 \ln e \, 3. \]
Setting the limit equal to \( f(0) \), we solve for \( a^2 \) and find \( a^2 = 1152 \).
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.