Solution: For the function \( f(x) \) to be continuous at \( x = 0 \), we must have:
\[ \lim_{x \to 0} f(x) = f(0). \]
Calculating the limit on the left-hand side for \( x \to 0 \), we get:
\[ \lim_{x \to 0} \frac{72x^2 - 9x - 8x^2 + 1}{\sqrt{2} - \sqrt{1 + \cos x}}. \]
Using L’Hôpital’s Rule, we evaluate this limit step-by-step, and find that:
\[ f(0) = a \ln e \, 2 \ln e \, 3. \]
Setting the limit equal to \( f(0) \), we solve for \( a^2 \) and find \( a^2 = 1152 \).
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)