The function is:
\[ f(x) = \cos x - x + 1. \]
The derivative is:
\[ f'(x) = -\sin x - 1. \]
Since \( -\sin x - 1 < 0 \) for all \( x \in \mathbb{R} \), \( f(x) \) is strictly decreasing in \([0, \pi]\).
At \( x = 0 \),
\[ f(0) = \cos(0) - 0 + 1 = 2. \]
At \( x = \pi \),
\[ f(\pi) = \cos(\pi) - \pi + 1 = -\pi < 0. \]
By the intermediate value theorem, \( f(x) = 0 \) has exactly one root in \([0, \pi]\). Thus, (S1) is correct.
(S2) is incorrect because \( f(x) \) is strictly decreasing in \([0, \pi]\).
Final Answer: Only (S1) is correct.
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to:
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: