Let \( z = x + iy \), where \( x, y \in \mathbb{R} \). Rewrite the given inequalities:
From \( |z - 1|^2 \leq 4 \):
\[ |z - 1|^2 = (x - 1)^2 + y^2 \leq 4 \implies (x - 1)^2 + y^2 \leq 4. \] This represents a circle with center \((1, 0)\) and radius \(2\).
Step 1: Identify the region of intersection.
The region of intersection is the upper semicircular region of the circle \( (x - 1)^2 + y^2 \leq 4 \) to the right of \( x = 1 \).
Step 2: Compute the area.
The area of the semicircle is: \[ \text{Area of semicircle} = \frac{1}{2} \pi r^2 = \frac{1}{2} \pi (2^2) = 2\pi. \] The area excluded by the sector to the left of \( x = 1 \) (sector A) is: \[ \text{Area of sector A} = \frac{\pi r^2}{4} = \frac{1}{4} \pi (2^2) = \pi. \]
Step 3: Subtract the areas.
The required area is: \[ \text{Area} = \text{Area of semicircle} - \text{Area of sector A} = 2\pi - \pi = \frac{3\pi}{2}. \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).