Let \( z = x + iy \), where \( x, y \in \mathbb{R} \). Rewrite the given inequalities:
From \( |z - 1|^2 \leq 4 \):
\[ |z - 1|^2 = (x - 1)^2 + y^2 \leq 4 \implies (x - 1)^2 + y^2 \leq 4. \] This represents a circle with center \((1, 0)\) and radius \(2\).
Step 1: Identify the region of intersection.
The region of intersection is the upper semicircular region of the circle \( (x - 1)^2 + y^2 \leq 4 \) to the right of \( x = 1 \).
Step 2: Compute the area.
The area of the semicircle is: \[ \text{Area of semicircle} = \frac{1}{2} \pi r^2 = \frac{1}{2} \pi (2^2) = 2\pi. \] The area excluded by the sector to the left of \( x = 1 \) (sector A) is: \[ \text{Area of sector A} = \frac{\pi r^2}{4} = \frac{1}{4} \pi (2^2) = \pi. \]
Step 3: Subtract the areas.
The required area is: \[ \text{Area} = \text{Area of semicircle} - \text{Area of sector A} = 2\pi - \pi = \frac{3\pi}{2}. \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then: