>
Mathematics
List of top Mathematics Questions
A lot of 100 bulbs contains 10 defective bulbs. Five bulbs are selected at random from the lot and are sent to the retail store. Then the probability that the store will receive at most one defective bulb is:
MHT CET - 2024
MHT CET
Mathematics
Probability
The statement \( [(p \rightarrow q) \wedge \sim q] \rightarrow r \) is a tautology when \( r \) is equivalent to:
MHT CET - 2024
MHT CET
Mathematics
Logic gates
If the statement \( p \leftrightarrow (q \rightarrow p) \) is false, then the true statement is:
MHT CET - 2024
MHT CET
Mathematics
Logic gates
Find the expected value and variance of \( X \) for the following p.m.f:
\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline P(X) & 0.2 & 0.3 & 0.1 & 0.15 & 0.25 \\ \hline \end{array} \]
MHT CET - 2024
MHT CET
Mathematics
Probability
The solution of the differential equation \( x \cos y \, dy = (x e^x \log x + e^x) \, dx \) is:
MHT CET - 2024
MHT CET
Mathematics
Differential equations
Integrate the function \( \int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx \):
MHT CET - 2024
MHT CET
Mathematics
Integration by Parts
The variance of the first 50 even natural numbers is:
MHT CET - 2024
MHT CET
Mathematics
Algebra of Complex Numbers
The variance of the following probability distribution is:
\[ \begin{array}{|c|c|} \hline x & P(X) \\ \hline 0 & \frac{9}{16} \\ 1 & \frac{3}{8} \\ 2 & \frac{1}{16} \\ \hline \end{array} \]
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The negative of \( (p \land (\sim q)) \lor (\sim p) \) is equivalent to:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The converse of \( ((\sim p) \land q) \Rightarrow r \) is:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
If \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \), then \( A^{-1} \) is:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
If \[ B = \begin{bmatrix} 3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] is the adjoint of a 3x3 matrix \( A \) and \( |A| = 4 \), then \( \alpha \) is equal to:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
The inverse of the matrix
\[ \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 5 & 2 & -1 \end{bmatrix} \]
is:
MHT CET - 2024
MHT CET
Mathematics
Transpose of a Matrix
If \( p \land q \) is False and \( p \rightarrow q \) is False, then the truth values of \( p \) and \( q \) are:
MHT CET - 2024
MHT CET
Mathematics
Logic gates
Find the area of the region bounded by the parabola
$$ y^2 = 4ax \text{ and its latus rectum.} $$
MHT CET - 2024
MHT CET
Mathematics
Parabola
The general solution of
$$ \left(x\frac{dy}{dx} - y\right)\sin\frac{y}{x} = x^3 e^x $$ is:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
Integrate the following function w.r.t. $x$: $\int \frac{e^{3x}}{e^{3x} + 1} \, dx$
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
One of the principal solutions of \( \sqrt{3} \sec x = -2 \) is equal to:
MHT CET - 2024
MHT CET
Mathematics
Trigonometry
The p.m.f. of a random variable \( X \) is:
\[ P(X) = \frac{2x}{n(n+1)}, \quad x = 1, 2, 3, \ldots, n \] \[ P(X) = 0, \quad \text{Otherwise.} \] Then \( E(X) \) is:
MHT CET - 2024
MHT CET
Mathematics
Probability
If
\[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \]
and
\[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix}, \]
then the values of \( a \) and \( c \) are respectively:
MHT CET - 2024
MHT CET
Mathematics
linear inequalities
\( \sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \)
MHT CET - 2024
MHT CET
Mathematics
Trigonometry
If \( \sin^{-1} x + \cos^{-1} y = \frac{3\pi}{10} \), then the value of \( \cos^{-1} x + \sin^{-1} y \) is:
MHT CET - 2024
MHT CET
Mathematics
Trigonometry
If \( y = (\sin x)^y \), then \( \frac{dy}{dx} \) is:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
If \( f(x) = 2x^3 - 15x^2 - 144x - 7 \), then \( f(x) \) is strictly decreasing in:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
The surface area of a spherical balloon is increasing at the rate of \( 2 \, \text{cm}^2/\text{sec} \). Then the rate of increase in the volume of the balloon, when the radius of the balloon is \( 6 \, \text{cm} \), is:
MHT CET - 2024
MHT CET
Mathematics
Integral Calculus
Prev
1
...
274
275
276
277
278
...
1168
Next