The curve \( y = \min\{\sin x, \cos x\} \) means that the curve follows the smaller of \(\sin x\) and \(\cos x\) for each \(x\). Over \([-\pi, \pi]\), the following intervals apply:
\[ y = \sin x \quad \text{for} \quad \left[ -\frac{\pi}{4}, \frac{3\pi}{4} \right], \] \[ y = \cos x \quad \text{for} \quad \left[ \frac{\pi}{4}, \frac{5\pi}{4} \right]. \]
The total area is:
\[ A = 2 \int_{-\pi/4}^{\pi/4} \sin x \, dx. \]
Compute:
\[ \int_{-\pi/4}^{\pi/4} \sin x \, dx = \left[-\cos x \right]_{-\pi/4}^{\pi/4} = -\cos(\pi/4) - (-\cos(-\pi/4)). \]
\[ \cos(\pi/4) = \cos(-\pi/4) = \frac{1}{\sqrt{2}}. \]
Thus:
\[ A = 2 \cdot \left( 1 - \frac{1}{\sqrt{2}} \right). \]
\[ A = 4. \]
\[ A^2 = 16. \]
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to: