We are tasked with evaluating the following limit:
\[ \lim_{x \to 0} \frac{f(x)}{x^3} \] where \( f(x) = \int_{0}^{x} \left(t + \sin \left(1 - e^t\right)\right) \, dt \).
To solve this, we apply L’Hopital’s Rule. First, we compute the derivative of \( f(x) \):
\[ f'(x) = x + \sin(1 - e^x) \]
Now, applying L’Hopital’s Rule to evaluate the limit:
\[ \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} \]
This becomes:
\[ \lim_{x \to 0} \frac{x + \sin(1 - e^x)}{3x^2} \]
We apply L’Hopital’s Rule again:
\[ \lim_{x \to 0} \frac{1 + \left(-\sin(1 - e^x)\right) \cdot \left(-e^x\right) + \cos(1 - e^x) \cdot e^x}{6x} \]
Evaluating this at \( x = 0 \):
\[ \lim_{x \to 0} \frac{-\sin(1 - e^x) \cdot e^x + \cos(1 - e^x) \cdot e^x}{6} = \frac{-1}{6} \]
Thus, the value of the limit is:
\[ -\frac{1}{6} \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).