We are tasked with evaluating the following limit:
\[ \lim_{x \to 0} \frac{f(x)}{x^3} \] where \( f(x) = \int_{0}^{x} \left(t + \sin \left(1 - e^t\right)\right) \, dt \).
To solve this, we apply L’Hopital’s Rule. First, we compute the derivative of \( f(x) \):
\[ f'(x) = x + \sin(1 - e^x) \]
Now, applying L’Hopital’s Rule to evaluate the limit:
\[ \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} \]
This becomes:
\[ \lim_{x \to 0} \frac{x + \sin(1 - e^x)}{3x^2} \]
We apply L’Hopital’s Rule again:
\[ \lim_{x \to 0} \frac{1 + \left(-\sin(1 - e^x)\right) \cdot \left(-e^x\right) + \cos(1 - e^x) \cdot e^x}{6x} \]
Evaluating this at \( x = 0 \):
\[ \lim_{x \to 0} \frac{-\sin(1 - e^x) \cdot e^x + \cos(1 - e^x) \cdot e^x}{6} = \frac{-1}{6} \]
Thus, the value of the limit is:
\[ -\frac{1}{6} \]