We are given that \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). The adjugate matrix \(\text{adj}(A)\) is defined as the transpose of the cofactor matrix of \( A \).
First, calculate \(\text{adj}(A)\):
\(\text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}\)
Next, we calculate \(\text{adj}(A)^2\):
\(\text{adj}(A)^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}\)
Then, we calculate \(\text{adj}(A)^{10}\), which follows a similar process:
\(\text{adj}(A)^{10} = \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
The matrix \( B \) is the sum of these matrices:
\(B = I + \text{adj}(A) + \text{adj}(A)^2 + \cdots + \text{adj}(A)^{10}\)
\(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
Summing the elements of \( B \), we find:
\(B = \begin{pmatrix} 11 & -110 \\ 0 & 11 \end{pmatrix}\)
Thus, the sum of all elements of \( B \) is:
\(11 + (-110) + 11 = -88\)
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).