We are given that \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). The adjugate matrix \(\text{adj}(A)\) is defined as the transpose of the cofactor matrix of \( A \).
First, calculate \(\text{adj}(A)\):
\(\text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}\)
Next, we calculate \(\text{adj}(A)^2\):
\(\text{adj}(A)^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}\)
Then, we calculate \(\text{adj}(A)^{10}\), which follows a similar process:
\(\text{adj}(A)^{10} = \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
The matrix \( B \) is the sum of these matrices:
\(B = I + \text{adj}(A) + \text{adj}(A)^2 + \cdots + \text{adj}(A)^{10}\)
\(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
Summing the elements of \( B \), we find:
\(B = \begin{pmatrix} 11 & -110 \\ 0 & 11 \end{pmatrix}\)
Thus, the sum of all elements of \( B \) is:
\(11 + (-110) + 11 = -88\)