Question:

Let \( A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \) and \[B = I + \text{adj}(A) + (\text{adj}(A))^2 + \dots + (\text{adj}(A))^{10}.\]Then, the sum of all the elements of the matrix \( B \) is:

Updated On: Mar 20, 2025
  • -110
  • 22
  • -88
  • -124
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given that \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). The adjugate matrix \(\text{adj}(A)\) is defined as the transpose of the cofactor matrix of \( A \).

First, calculate \(\text{adj}(A)\):

\(\text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}\)

Next, we calculate \(\text{adj}(A)^2\):

\(\text{adj}(A)^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}\)

Then, we calculate \(\text{adj}(A)^{10}\), which follows a similar process:

\(\text{adj}(A)^{10} = \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)

The matrix \( B \) is the sum of these matrices:

\(B = I + \text{adj}(A) + \text{adj}(A)^2 + \cdots + \text{adj}(A)^{10}\)

\(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)

Summing the elements of \( B \), we find:

\(B = \begin{pmatrix} 11 & -110 \\ 0 & 11 \end{pmatrix}\)

Thus, the sum of all elements of \( B \) is:

\(11 + (-110) + 11 = -88\)

Was this answer helpful?
0
0