We are given that \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). The adjugate matrix \(\text{adj}(A)\) is defined as the transpose of the cofactor matrix of \( A \).
First, calculate \(\text{adj}(A)\):
\(\text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}\)
Next, we calculate \(\text{adj}(A)^2\):
\(\text{adj}(A)^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}\)
Then, we calculate \(\text{adj}(A)^{10}\), which follows a similar process:
\(\text{adj}(A)^{10} = \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
The matrix \( B \) is the sum of these matrices:
\(B = I + \text{adj}(A) + \text{adj}(A)^2 + \cdots + \text{adj}(A)^{10}\)
\(B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}\)
Summing the elements of \( B \), we find:
\(B = \begin{pmatrix} 11 & -110 \\ 0 & 11 \end{pmatrix}\)
Thus, the sum of all elements of \( B \) is:
\(11 + (-110) + 11 = -88\)
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
