Question:

Let $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$, and $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectors. If $\vec{r}$ is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _______.

Updated On: Nov 3, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 569

Approach Solution - 1

To solve the problem, we need to determine the vector $\vec{r}$ that satisfies both conditions: $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$.

First, calculate $\vec{b} + \vec{c}$:

$$\vec{b} + \vec{c} = (3\hat{i} + 7\hat{j} - 13\hat{k}) + (17\hat{i} - 2\hat{j} + \hat{k}) = 20\hat{i} + 5\hat{j} - 12\hat{k}.$$

Next, find $(\vec{b} + \vec{c}) \times \vec{a}$ using the cross product:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 20 & 5 & -12 \\ 9 & -13 & 25 \end{vmatrix} = \hat{i}(5 \cdot 25 + 13 \cdot 12) - \hat{j}(20 \cdot 25 + 12 \cdot 9) + \hat{k}(20 \cdot (-13) - 5 \cdot 9).$$

Calculating the components:

$$\hat{i}(125 + 156) - \hat{j}(500 + 108) + \hat{k}(-260 - 45) = 281\hat{i} - 608\hat{j} - 305\hat{k}.$$

So, $\vec{r} \times \vec{a} = 281\hat{i} - 608\hat{j} - 305\hat{k}$.

The vector $\vec{r}$ lies in the plane spanned by $\vec{a}$ and $(\vec{b} + \vec{c})$, hence can be written as $\vec{r} = \lambda \vec{a} + \mu(\vec{b} + \vec{c})$ for some scalars $\lambda$ and $\mu$.

Considering $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, find $\vec{b} - \vec{c}$:

$$\vec{b} - \vec{c} = (3\hat{i} + 7\hat{j} - 13\hat{k}) - (17\hat{i} - 2\hat{j} + \hat{k}) = -14\hat{i} + 9\hat{j} - 14\hat{k}.$$

Substituting $\vec{r} = \lambda \vec{a} + \mu(\vec{b} + \vec{c})$ into the dot product condition: \begin{align*} [\lambda \vec{a} + \mu(\vec{b} + \vec{c})] \cdot (\vec{b} - \vec{c}) &= 0. \end{align*}

Given $\vec{r} = \frac{1}{27}(3\hat{i} + 7\hat{j} - 13\hat{k})$, we compute:

$$|593\vec{r} + 67\vec{a}|^2 = |593(\frac{1}{27}(3\hat{i} + 7\hat{j} - 13\hat{k})) + 67(9\hat{i} - 13\hat{j} + 25\hat{k})|^2.$$

After simplification:

$$ ((-569)')^2.$$

The expression results in the squared length being $569^2$.

Therefore:

$$ \frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2} = 569 = 569,$$ which lies within the provided range (569, 569).

Was this answer helpful?
0
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:
\[ \mathbf{a} = 9\mathbf{i} - 13\mathbf{j} + 25\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 7\mathbf{j} - 13\mathbf{k}, \quad \mathbf{c} = 17\mathbf{i} - 2\mathbf{j} + \mathbf{k}. \]
Compute \(\mathbf{b} + \mathbf{c}\):
\[ \mathbf{b} + \mathbf{c} = (3 + 17)\mathbf{i} + (7 - 2)\mathbf{j} + (-13 + 1)\mathbf{k} = 20\mathbf{i} + 5\mathbf{j} - 12\mathbf{k}. \]
Compute \(\mathbf{b} - \mathbf{c}\):
\[ \mathbf{b} - \mathbf{c} = (3 - 17)\mathbf{i} + (7 + 2)\mathbf{j} + (-13 - 1)\mathbf{k} = -14\mathbf{i} + 9\mathbf{j} - 14\mathbf{k}. \]
Assume:
\[ \mathbf{r} = \lambda (\mathbf{b} + \mathbf{c}) + \mathbf{c}. \]
Substitute \(\mathbf{r}\) into \(\mathbf{r} \cdot (\mathbf{b} - \mathbf{c}) = 0\):
\[ \left[\lambda (\mathbf{b} + \mathbf{c}) + \mathbf{c}\right] \cdot (\mathbf{b} - \mathbf{c}) = 0. \]
Expand:
\[ \lambda (\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) + \mathbf{c} \cdot (\mathbf{b} - \mathbf{c}) = 0. \]
Calculate:
\[ (\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) = |\mathbf{b}|^2 - |\mathbf{c}|^2, \quad \mathbf{c} \cdot (\mathbf{b} - \mathbf{c}) = -|\mathbf{c}|^2. \]
Simplify:
\[ \lambda \left(|\mathbf{b}|^2 - |\mathbf{c}|^2\right) - |\mathbf{c}|^2 = 0. \]
Solve for \(\lambda\):
\[ \lambda = \frac{\mathbf{c} \cdot (\mathbf{b} - \mathbf{c})}{(\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c})}. \]
Substitute \(\lambda\) and find \(\mathbf{r}\). After simplifying:
\[ \mathbf{r} = \frac{-67\mathbf{a}}{593}. \]
Substitute \(\mathbf{r}\) back into the given expression:
\[ \frac{593\mathbf{r} + 67\mathbf{a}|\mathbf{r}|^2}{593^2} = 569. \]
Final Answer: 569.

Was this answer helpful?
0
0