The given differential equation is:
\[ (1 + y^2)e^{\tan^{-1}x}dx + \cos^2x(1 + e^{2\tan^{-1}x})dy = 0. \]
Separate the variables:
\[ \frac{\sec^2x \cdot e^{\tan^{-1}x}dx}{1 + e^{2\tan^{-1}x}} + \frac{dy}{1 + y^2} = 0. \]
Integrating both sides:
\[ \tan^{-1}(e^{\tan^{-1}x}) + \tan^{-1}(y) = C. \]
Using the initial condition \(y(0) = 1\):
\[ \tan^{-1}(e^{\tan^{-1}(0)}) + \tan^{-1}(1) = C. \]
Simplify:
\[ \tan^{-1}(e^0) + \tan^{-1}(1) = C \implies \tan^{-1}(1) + \tan^{-1}(1) = C \implies C = \frac{\pi}{2}. \]
The solution becomes:
\[ \tan^{-1}(e^{\tan^{-1}x}) + \tan^{-1}(y) = \frac{\pi}{2}. \]
At \(x = \frac{\pi}{4}\), substitute into the solution:
\[ \tan^{-1}(e^{\tan^{-1}(\frac{\pi}{4})}) + \tan^{-1}(y) = \frac{\pi}{2}. \]
Rearrange:
\[ \tan^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(e^{\tan^{-1}(\frac{\pi}{4})}). \]
From the properties of \(\tan^{-1}\), substitute:
\[ \tan^{-1}(y) = \cot^{-1}(e). \]
Simplify:
\[ y = \frac{1}{e}. \]
Final Answer: \(\frac{1}{e}\).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.