Consider rectangle \(ABCD\) inscribed within rectangle \(PQRS\) as shown in the figure. Let \(\theta\) be the angle formed between side \(AB\) of \(ABCD\) and side \(PQ\) of \(PQRS\).
Using trigonometry, the dimensions of \(PQRS\) are expressed as:
\[ a = 4 \cos \theta + 2 \sin \theta \] \[ b = 2 \cos \theta + 4 \sin \theta \]
The area of \(PQRS\) is given by:
\[ \text{Area} = (4 \cos \theta + 2 \sin \theta)(2 \cos \theta + 4 \sin \theta) \]
Expanding this, we get:
\[ = 8 \cos^2 \theta + 16 \sin \theta \cos \theta + 4 \sin^2 \theta + 8 \sin^2 \theta \] \[ = 8 + 10 \sin 2\theta \]
The area is maximized when \(\sin 2\theta = 1\), i.e., \(\theta = 45^\circ\).
Thus, the maximum area is:
\[ 8 + 10 = 18 \]
Now, we calculate \((a + b)^2\):
\[ (a + b)^2 = (4 \cos \theta + 2 \sin \theta + 2 \cos \theta + 4 \sin \theta)^2 \] \[ = (6 \cos \theta + 6 \sin \theta)^2 \] \[ = 36(\sin \theta + \cos \theta)^2 \]
Since \(\sin \theta + \cos \theta = \sqrt{2}\) at \(\theta = 45^\circ\),\[ = 36(\sqrt{2})^2 = 36 \times 2 = 72 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: