We start with the given congruence:
\[ (428)^{2024} \equiv 8^{2024} \pmod{21} \]
Now, simplify \(8^2 \mod 21\):
\[ 8^2 = 64 \equiv 1 \pmod{21} \]
Hence,
\[ 8^{2024} = (8^2)^{1012} \equiv 1^{1012} \equiv 1 \pmod{21} \]
Therefore, the remainder is:
\[ \boxed{1} \]
Step 1: Simplify \(428^{2024} \mod 21\) Write 428 as:
$$428 = 420 + 8.$$
Thus:
$$428^{2024} = (420 + 8)^{2024}.$$
When divided by 21, 420 is a multiple of 21:
$$428^{2024} \equiv 8^{2024} \pmod{21}.$$
Step 2: Simplify \(8^{2024} \mod 21\) Write \(8^{2024}\) as:
$$8^{2024} = (8^2)^{1012}.$$
Calculate \(8^2\):
$$8^2 = 64.$$
Thus:
$$8^{2024} \equiv 64^{1012} \pmod{21}.$$
Step 3: Simplify \(64 \mod 21\) Since \(64 = 63 + 1 = 21 \times 3 + 1\), we have:
$$64 \equiv 1 \pmod{21}.$$
Thus:
$$64^{1012} \equiv 1^{1012} \pmod{21}.$$
Step 4: Final Result
$$8^{2024} \equiv 1 \pmod{21}.$$
Hence, the remainder when \(428^{2024}\) is divided by 21 is: 1.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.