AA, MM, TT, H, I, C, S, E
(1) All distinct
8C5 → 56
(2) 2 same, 3 different
3C1 × 7C3 → 105
(3) 2 same 1st kind, 2 same 2nd kind, 1 different
3C2 × 6C1 → 18
Total → 179
Consider the distinct letters in the word MATHEMATICS: \( M (2), A (2), T (2), H (1), E (1), I (1), C (1), S (1) \). We aim to select 5 letters under different conditions of repetition.
Case 1: All five chosen letters are distinct. We choose 5 distinct letters from 8 available distinct letters:
\[\binom{8}{5} = 56 \text{ ways.}\]
Case 2: Two letters are the same, and three other letters are distinct. We first choose 1 letter to repeat from the letters M, A, or T (3 choices). Then, we choose 3 more distinct letters from the remaining 7:
\[\binom{3}{1} \times \binom{7}{3} = 3 \times 35 = 105 \text{ ways.}\]
Case 3: Two letters of one kind are repeated, and two letters of another kind are repeated, with one additional distinct letter. We first select 2 letters to repeat from M, A, or T (choose 2 out of 3). Then, we select 1 distinct letter from the remaining 6:
\[\binom{3}{2} \times \binom{6}{1} = 3 \times 6 = 18 \text{ ways.}\]
Summing all the cases gives: \[56 + 105 + 18 = 179 \text{ ways.}\]
Therefore: \[179.\]
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 