Consider a $\triangle ABC$ where $A(1, 2, 3)$, $B(-2, 8, 0)$, and $C(3, 6, 7)$. If the angle bisector of $\angle BAC$ meets the line $BC$ at $D$, then the length of the projection of the vector $\overrightarrow{AD}$ on the vector $\overrightarrow{AC}$ is: