Given: \[ I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} \, dx. \]
Step 1: Substitution Let: \[ t = 1 - \cot x, \quad \csc^2 x \, dx = dt. \] The integral becomes: \[ I = \int \frac{6 \, dt}{t^2} = -\frac{6}{t} + c = -\frac{6}{1 - \cot x} + c. \]
Step 2: Using \(I(0) = 3\): At \(x = 0\), \(\cot(0) = \infty\). Substituting: \[ I(0) = 3 = -\frac{6}{1 - \cot(0)} + c \implies c = 3. \] Thus, the expression for \(I(x)\) becomes: \[ I(x) = 3 - \frac{6}{1 - \cot x}. \]
Step 3: Evaluate \(I\left(\frac{\pi}{12}\right)\): At \(x = \frac{\pi}{12}\): \[ \cot\left(\frac{\pi}{12}\right) = 2 + \sqrt{3}. \] Substitute into \(I(x)\): \[ I\left(\frac{\pi}{12}\right) = 3 - \frac{6}{1 - (2 + \sqrt{3})}. \] Simplify: \[ I\left(\frac{\pi}{12}\right) = 3 + \frac{6}{2 + \sqrt{3} - 1} = 3 + \frac{6}{1 + \sqrt{3}}. \]
Step 4: Rationalize the denominator: \[ \frac{6}{1 + \sqrt{3}} = \frac{6(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{6(1 - \sqrt{3})}{1 - 3} = \frac{6(\sqrt{3} - 1)}{2} = 3(\sqrt{3} - 1). \] Substitute back: \[ I\left(\frac{\pi}{12}\right) = 3 + 3\sqrt{3} - 3 = 3\sqrt{3}. \]
Final Answer: \[ \boxed{3\sqrt{3}.} \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
The cycloalkene (X) on bromination consumes one mole of bromine per mole of (X) and gives the product (Y) in which C : Br ratio is \(3:1\). The percentage of bromine in the product (Y) is _________ % (Nearest integer).
Given:
\[ \text{H} = 1,\quad \text{C} = 12,\quad \text{O} = 16,\quad \text{Br} = 80 \]
Sodium fusion extract of an organic compound (Y) with CHCl\(_3\) and chlorine water gives violet colour to the CHCl\(_3\) layer. \(0.15\,\text{g}\) of (Y) gave \(0.12\,\text{g}\) of the silver halide precipitate in Carius method. Percentage of halogen in the compound (Y) is _________ (Nearest integer).
Given:
\[ \text{C} = 12,\quad \text{H} = 1,\quad \text{Cl} = 35.5,\quad \text{Br} = 80,\quad \text{I} = 127 \]
Dissociation of a gas \( A_2 \) takes place according to the following chemical reaction. At equilibrium, the total pressure is \( 1 \, \text{bar} \) at \( 300 \, \text{K} \).
\[ A_2(g) \rightleftharpoons 2A(g) \]
The standard Gibbs energy of formation of the involved substances is given below:
| Substance | \( \Delta G_f^\circ \) (kJ mol\(^{-1}\)) |
|---|---|
| \( A_2 \) | \(-100.00\) |
| \( A \) | \(-50.832\) |
The degree of dissociation of \( A_2(g) \) is given by
\[ (x \times 10^{-2})^{1/2} \]
where \( x = \) ________ (Nearest integer).
[Given: \( R = 8 \, \text{J mol}^{-1}\text{K}^{-1} \), \( \log 2 = 0.3010 \), \( \log 3 = 0.48 \). Assume degree of dissociation is not negligible.]