Question:

Let for a differentiable function \(f : (0, \infty) \rightarrow \mathbb{R}\)\(f(x) - f(y) \geq \log_e \left( \frac{x}{y} \right) + x - y, \quad \forall \; x, y \in (0, \infty).\) 
Then \(\sum_{n=1}^{20} f'\left(\frac{1}{n^2}\right)\) is equal to ____.

Updated On: Nov 11, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2890

Solution and Explanation

Given: \(f(x) - f(y) \geq \ln x - \ln y + x - y\)

Rewriting:

\(f(x) - f(y) = \frac{\sqrt{x} - \sqrt{y}}{x - y} \cdot \frac{\sqrt{x} + \sqrt{y}}{x - y}\)

- Case 1: Let \( x \to y \)
\(\lim_{y \to x^-} f' \left( \frac{1}{x} \right) \geq \frac{1}{x} + 1 \quad \text{...(1)}\)

- Case 2: Let \( x \neq y \)

 \(\lim_{y \to x^+} f' \left( x^+ \right) \leq \frac{1}{x} + 1 \quad \text{...(2)}\)
Thus, \(f'(x) = \frac{1}{x+1}\).

Now, substitute \( f' \left( \frac{1}{x} \right) = n + 1 \) into the sum:

\(\sum_{n=1}^{20} f' \left( \frac{1}{x} \right) = \sum_{n=1}^{20} \left( n^2 + 1 \right)\)
 

Calculating:

\(\sum_{n=1}^{20} n^2 = \frac{20 \cdot 21 \cdot 41}{6} = 2870, \quad \sum_{n=1}^{20} 1 = 20\)
 

Therefore:

\(\sum_{n=1}^{20} f' \left( \frac{1}{x} \right) = 2870 + 20 = 2890\)
 

Was this answer helpful?
0
0

Top Questions on Fundamental Theorem of Calculus

View More Questions

Questions Asked in JEE Main exam

View More Questions