Given the equation:
\[ \sin^2 x + (2 + 2x - x^2) \sin x - 3(x - 1)^2 = 0. \]
Rearranging terms:
\[ \sin^2 x - (x^2 - 2x - 2) \sin x - 3(x - 1)^2 = 0. \]
Step 1: Identify Possible Roots Consider the quadratic equation in terms of \(\sin x\):
\[ \sin^2 x - (x^2 - 2x - 2) \sin x - 3(x - 1)^2 = 0. \]
Let:
\[ y = \sin x. \]
The equation becomes:
\[ y^2 - (x^2 - 2x - 2)y - 3(x - 1)^2 = 0. \]
Step 2: Apply Quadratic Formula Using the quadratic formula:
\[ y = \frac{(x^2 - 2x - 2) \pm \sqrt{(x^2 - 2x - 2)^2 + 12(x - 1)^2}}{2}. \]
Step 3: Check Valid Solutions For \(y = \sin x\) to be a valid solution, we require:
\[ -1 \leq y \leq 1. \]
This constraint eliminates extraneous roots and restricts the possible values of \(x\) within the interval \(-\pi \leq x \leq \pi\).
Step 4: Evaluate Specific Cases - \(\sin x = -3\) (rejected, as \(\sin x\) must lie within \([-1, 1]\)). - \(\sin x = (x - 1)^2\).
Solving \(\sin x = (x - 1)^2\) within the interval \(-\pi \leq x \leq \pi\) yields two valid solutions.
Therefore, the number of solutions is 2.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: