Given the quadrilateral OABC, we calculate its area step by step.
Area of the parallelogram:
The area of the parallelogram formed by sides OA and OC is given by:
\[ \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| = 2 \left| \overrightarrow{a} \times 3 \overrightarrow{b} \right| = 15 \]
Simplify:
\[ 6 \left| \overrightarrow{a} \times \overrightarrow{b} \right| = 15 \]
\[ \therefore \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2} \quad \cdots (1) \]
Area of the quadrilateral \(OABC\):
The area of the quadrilateral is:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right| \]
Here:
\[ \overrightarrow{d_1} = \overrightarrow{AC}, \quad \overrightarrow{d_2} = \overrightarrow{OB} \]
Substituting:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{OB} \right| = \frac{1}{2} \left| (3 \overrightarrow{b} - 2 \overrightarrow{a}) \times (6 \overrightarrow{a} + 5 \overrightarrow{b}) \right| \]
Expanding the cross product:
\[ = \frac{1}{2} \left| 18 \overrightarrow{b} \times \overrightarrow{a} - 10 \overrightarrow{a} \times \overrightarrow{b} \right| \]
Using \(\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2}\) from (1):
\[ = \left( 14 \left| \overrightarrow{a} \times \overrightarrow{b} \right| \right) \]
\[ = 14 \times \frac{5}{2} = 35 \]
Final Answer: The area of the quadrilateral \(OABC\) is 35.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: