To find the area of quadrilateral \(OABC\), we need to calculate the areas of the parallelograms formed by the vectors. Given vectors are:
The problem states that the area of the parallelogram with adjacent sides \(\overrightarrow{OA}\) and \(\overrightarrow{OC}\) is 15 square units. This can be calculated using the vector cross product formula for area:
\(|\overrightarrow{OA} \times \overrightarrow{OC}| = |(2\vec{a}) \times (3\vec{b})| = |6(\vec{a} \times \vec{b})| = 15\)
This implies: \(|\vec{a} \times \vec{b}| = \frac{15}{6} = \frac{5}{2}\)
Now, to find the area of quadrilateral \(OABC\), which consists of two triangles or parallelograms, we consider the two relevant areas:
First, calculate the area of parallelogram \([OA, OB]\):
\(|\overrightarrow{OA} \times \overrightarrow{OB}| = |(2\vec{a}) \times (6\vec{a} + 5\vec{b})|\)
Simplify using distributive property:
\(|2\vec{a} \times 6\vec{a} + 2\vec{a} \times 5\vec{b}| = |0 + 10(\vec{a} \times \vec{b})| = 10 \times \frac{5}{2} = 25\)
Next, calculate the area of parallelogram \([OB, OC]\):
\(|\overrightarrow{OB} \times \overrightarrow{OC}| = |(6\vec{a} + 5\vec{b}) \times (3\vec{b})|\)
Distribute again:
\(|6\vec{a} \times 3\vec{b} + 5\vec{b} \times 3\vec{b}| = |18(\vec{a} \times \vec{b}) + 0| = 18 \times \frac{5}{2} = 45\)
Adding the two areas gives the total area of quadrilateral \(OABC\):
\(\text{Area of } OABC = \frac{25}{2} + \frac{45}{2} = \frac{70}{2} = 35\)
Thus, the area of the quadrilateral \(OABC\) is 35 square units.
Given the quadrilateral OABC, we calculate its area step by step.
Area of the parallelogram:
The area of the parallelogram formed by sides OA and OC is given by:
\[ \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| = 2 \left| \overrightarrow{a} \times 3 \overrightarrow{b} \right| = 15 \]
Simplify:
\[ 6 \left| \overrightarrow{a} \times \overrightarrow{b} \right| = 15 \]
\[ \therefore \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2} \quad \cdots (1) \]
Area of the quadrilateral \(OABC\):
The area of the quadrilateral is:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right| \]
Here:
\[ \overrightarrow{d_1} = \overrightarrow{AC}, \quad \overrightarrow{d_2} = \overrightarrow{OB} \]
Substituting:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{OB} \right| = \frac{1}{2} \left| (3 \overrightarrow{b} - 2 \overrightarrow{a}) \times (6 \overrightarrow{a} + 5 \overrightarrow{b}) \right| \]
Expanding the cross product:
\[ = \frac{1}{2} \left| 18 \overrightarrow{b} \times \overrightarrow{a} - 10 \overrightarrow{a} \times \overrightarrow{b} \right| \]
Using \(\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2}\) from (1):
\[ = \left( 14 \left| \overrightarrow{a} \times \overrightarrow{b} \right| \right) \]
\[ = 14 \times \frac{5}{2} = 35 \]
Final Answer: The area of the quadrilateral \(OABC\) is 35.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 