To find the area of quadrilateral \(OABC\), we need to calculate the areas of the parallelograms formed by the vectors. Given vectors are:
The problem states that the area of the parallelogram with adjacent sides \(\overrightarrow{OA}\) and \(\overrightarrow{OC}\) is 15 square units. This can be calculated using the vector cross product formula for area:
\(|\overrightarrow{OA} \times \overrightarrow{OC}| = |(2\vec{a}) \times (3\vec{b})| = |6(\vec{a} \times \vec{b})| = 15\)
This implies: \(|\vec{a} \times \vec{b}| = \frac{15}{6} = \frac{5}{2}\)
Now, to find the area of quadrilateral \(OABC\), which consists of two triangles or parallelograms, we consider the two relevant areas:
First, calculate the area of parallelogram \([OA, OB]\):
\(|\overrightarrow{OA} \times \overrightarrow{OB}| = |(2\vec{a}) \times (6\vec{a} + 5\vec{b})|\)
Simplify using distributive property:
\(|2\vec{a} \times 6\vec{a} + 2\vec{a} \times 5\vec{b}| = |0 + 10(\vec{a} \times \vec{b})| = 10 \times \frac{5}{2} = 25\)
Next, calculate the area of parallelogram \([OB, OC]\):
\(|\overrightarrow{OB} \times \overrightarrow{OC}| = |(6\vec{a} + 5\vec{b}) \times (3\vec{b})|\)
Distribute again:
\(|6\vec{a} \times 3\vec{b} + 5\vec{b} \times 3\vec{b}| = |18(\vec{a} \times \vec{b}) + 0| = 18 \times \frac{5}{2} = 45\)
Adding the two areas gives the total area of quadrilateral \(OABC\):
\(\text{Area of } OABC = \frac{25}{2} + \frac{45}{2} = \frac{70}{2} = 35\)
Thus, the area of the quadrilateral \(OABC\) is 35 square units.
Given the quadrilateral OABC, we calculate its area step by step.
Area of the parallelogram:
The area of the parallelogram formed by sides OA and OC is given by:
\[ \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| = 2 \left| \overrightarrow{a} \times 3 \overrightarrow{b} \right| = 15 \]
Simplify:
\[ 6 \left| \overrightarrow{a} \times \overrightarrow{b} \right| = 15 \]
\[ \therefore \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2} \quad \cdots (1) \]
Area of the quadrilateral \(OABC\):
The area of the quadrilateral is:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right| \]
Here:
\[ \overrightarrow{d_1} = \overrightarrow{AC}, \quad \overrightarrow{d_2} = \overrightarrow{OB} \]
Substituting:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{OB} \right| = \frac{1}{2} \left| (3 \overrightarrow{b} - 2 \overrightarrow{a}) \times (6 \overrightarrow{a} + 5 \overrightarrow{b}) \right| \]
Expanding the cross product:
\[ = \frac{1}{2} \left| 18 \overrightarrow{b} \times \overrightarrow{a} - 10 \overrightarrow{a} \times \overrightarrow{b} \right| \]
Using \(\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2}\) from (1):
\[ = \left( 14 \left| \overrightarrow{a} \times \overrightarrow{b} \right| \right) \]
\[ = 14 \times \frac{5}{2} = 35 \]
Final Answer: The area of the quadrilateral \(OABC\) is 35.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: