To determine the number of points where the function \( f(x) = 2x^2 + x + [x^2] - [x] \) is not continuous, we analyze the potential discontinuities caused by the greatest integer function, denoted by \([t]\). Discontinuities for such expressions typically occur at integer points where the floor function \([x]\) or \([x^2]\) transitions.
Let's first identify the key transition points within the domain \([-1, 2]\):
By evaluating the potential discontinuities at these points:
Summing these, the points of discontinuity are \(-1, 0, 1, 2\), leading to a total of 4 points where the function is not continuous.
Given \( f(x) = 2x^2 + x + \lfloor x^2 \rfloor - \lfloor x \rfloor \), we analyze its continuity. The floor function, \( \lfloor x \rfloor \), introduces discontinuities at integer points since it changes its value abruptly.
Step 1: Points of discontinuity from \( \lfloor x \rfloor \) and \( \lfloor x^2 \rfloor \):
1. The term \( \lfloor x \rfloor \) is discontinuous at all integer values of \( x \) within the interval \([-1, 2]\), i.e., at \( x = -1, 0, 1, 2 \). 2. The term \( \lfloor x^2 \rfloor \) introduces discontinuities at points where \( x^2 \) crosses an integer value. On solving: - For \( x^2 = 0, 1, 4 \): - \( x = -2, -1, 0, 1, 2 \) (within \([-1, 2]\), only \( x = -1, 0, 1 \)).
Step 2: Combine discontinuities: Overall, the combined discontinuities occur at the union of these points:
\[ \text{Points: } x = -1, 0, 1, 2. \]
- Since these four points involve jumps in either \( \lfloor x \rfloor \) or \( \lfloor x^2 \rfloor \), \( f(x) \) is discontinuous at exactly 4 points.
Thus, the total number of discontinuities is 4.
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point βAβ, the string becomes slack when the bob reaches at the point βDβ. The ratio of the kinetic energy of the bob at the points B and C is: 
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is β¦β¦.. cm.

Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to: