Using the first law of thermodynamics:
\[ \Delta U = Q + W \]
For an isothermal process, \(\Delta U = 0\), so \(Q = -W\).
\[ W = -P_{\text{ext}} \Delta V = -80 \times 10^3 \times (45 - 30) \times 10^{-3} = -1200 \, \text{J} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: