To determine the number of points of local maxima for the function \(f(x) = 4 \cos^3 x + 3\sqrt{3} \cos^2 x - 10\) in the interval \((0, 2\pi)\), we need to find the critical points and evaluate the nature of these points.
\(f(x) = 4 (\cos x)^3 + 3\sqrt{3} (\cos x)^2 - 10\)
Let \(u = \cos x\), then \(f(u) = 4u^3 + 3\sqrt{3}u^2 - 10\).
So, \(\frac{d}{dx} (\cos x) = -\sin x\).
\(f'(x) = \frac{d}{dx}(4u^3 + 3\sqrt{3}u^2 - 10)\)
\(= (12u^2 + 6\sqrt{3}u)(- \sin x)\)
Substitute \(u = \cos x\) back: \(f'(x) = - (12 \cos^2 x + 6\sqrt{3} \cos x) \sin x\)
\(- (12 \cos^2 x + 6\sqrt{3} \cos x) \sin x = 0\)
This equation becomes: \([\sin x = 0] \; \text{or} \; [12 \cos^2 x + 6\sqrt{3} \cos x = 0]\)
Factor out the expression: \(6 \cos x(2 \cos x + \sqrt{3}) = 0\)
Hence, \(\cos x = 0\) or \(\cos x = -\frac{\sqrt{3}}{2}\).
Therefore, the number of points of local maxima of \(f\) in the interval \((0, 2\pi)\) is 2.
The given function is:
\[ f(x) = 4 \cos^3(x) + 3\sqrt{3}\cos^2(x) - 10, \quad x \in (0, 2\pi). \]
Step 1: Taking the derivative:
\[ f'(x) = 12 \cos^2(x)(- \sin(x)) + 3\sqrt{3}[2\cos(x)(- \sin(x))], \] \[ f'(x) = -6\sin(x)\cos(x)[2\cos(x) + \sqrt{3}]. \]
Step 2: Critical points occur when:
\[ \sin(x) = 0 \quad \text{or} \quad 2\cos(x) + \sqrt{3} = 0. \]
Step 3: Solving these equations:
\[ \sin(x) = 0 \implies x = 0, \pi, 2\pi, \] \[ \cos(x) = -\frac{\sqrt{3}}{2} \implies x = \frac{5\pi}{6}, \frac{7\pi}{6}. \]
Step 4: Checking the interval \((0, 2\pi)\):
The local maxima occur at: \[ x = \frac{5\pi}{6}, \frac{7\pi}{6}. \]
Final Answer:
\[ \text{2.} \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 