The given function is:
\[ f(x) = 4 \cos^3(x) + 3\sqrt{3}\cos^2(x) - 10, \quad x \in (0, 2\pi). \]
Step 1: Taking the derivative:
\[ f'(x) = 12 \cos^2(x)(- \sin(x)) + 3\sqrt{3}[2\cos(x)(- \sin(x))], \] \[ f'(x) = -6\sin(x)\cos(x)[2\cos(x) + \sqrt{3}]. \]
Step 2: Critical points occur when:
\[ \sin(x) = 0 \quad \text{or} \quad 2\cos(x) + \sqrt{3} = 0. \]
Step 3: Solving these equations:
\[ \sin(x) = 0 \implies x = 0, \pi, 2\pi, \] \[ \cos(x) = -\frac{\sqrt{3}}{2} \implies x = \frac{5\pi}{6}, \frac{7\pi}{6}. \]
Step 4: Checking the interval \((0, 2\pi)\):
The local maxima occur at: \[ x = \frac{5\pi}{6}, \frac{7\pi}{6}. \]
Final Answer:
\[ \text{2.} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).