The total capacitance \( C_{\text{eq}} \) of the capacitor is the sum of the two capacitances \( C_1 \) and \( C_2 \):
\[C_{\text{eq}} = C_1 + C_2\]
Capacitance \( C_1 \) with dielectric constant \( K_1 = 2 \) is:
\[C_1 = \frac{\varepsilon_0 A}{d} \cdot K_1 = 2 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 10 \, \mu F\]
Capacitance \( C_2 \) with dielectric constant \( K_2 = 3 \) is:
\[C_2 = \frac{\varepsilon_0 A}{d} \cdot K_2 = 3 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 15 \, \mu F\]
Thus, the total capacitance is:
\[C_{\text{eq}} = 10 \, \mu F + 15 \, \mu F = 25 \, \mu F\]
Now, the charge on the capacitors is given by:
\[C_1 = 10 \, \text{V}, \quad C_2 = 1.5 \, \text{V}\]
The force between the plates is:
\[F = \frac{Q^2}{2A\varepsilon_0}\]
Substitute the values:
\[\frac{100 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} + \frac{225 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} = 8\]
Thus, the supply voltage is:
\[325 V^2 = 8 \times 4 \times 10^{-4} \times 8.85\]
\[V^2 = \frac{32 \times 8.85 \times 10^{-4}}{325}\]
\[\therefore V = \sqrt{\frac{283.2 \times 10^{-4}}{325}}\]
\[V = 0.93 \times 10^{-2}\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).