The total capacitance \( C_{\text{eq}} \) of the capacitor is the sum of the two capacitances \( C_1 \) and \( C_2 \):
\[C_{\text{eq}} = C_1 + C_2\]
Capacitance \( C_1 \) with dielectric constant \( K_1 = 2 \) is:
\[C_1 = \frac{\varepsilon_0 A}{d} \cdot K_1 = 2 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 10 \, \mu F\]
Capacitance \( C_2 \) with dielectric constant \( K_2 = 3 \) is:
\[C_2 = \frac{\varepsilon_0 A}{d} \cdot K_2 = 3 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 15 \, \mu F\]
Thus, the total capacitance is:
\[C_{\text{eq}} = 10 \, \mu F + 15 \, \mu F = 25 \, \mu F\]
Now, the charge on the capacitors is given by:
\[C_1 = 10 \, \text{V}, \quad C_2 = 1.5 \, \text{V}\]
The force between the plates is:
\[F = \frac{Q^2}{2A\varepsilon_0}\]
Substitute the values:
\[\frac{100 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} + \frac{225 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} = 8\]
Thus, the supply voltage is:
\[325 V^2 = 8 \times 4 \times 10^{-4} \times 8.85\]
\[V^2 = \frac{32 \times 8.85 \times 10^{-4}}{325}\]
\[\therefore V = \sqrt{\frac{283.2 \times 10^{-4}}{325}}\]
\[V = 0.93 \times 10^{-2}\]
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: