The impedance $Z$ of the circuit is:
\(Z = \sqrt{R^2 + X_C^2} = \sqrt{4^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \, \Omega.\)
The RMS voltage is:
\(V_\text{rms} = \frac{V_\text{peak}}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}} = 8 \, \text{V}.\)
The RMS current is: \(I_\text{rms} = \frac{V_\text{rms}}{Z} = \frac{8}{8} = 1 \, \text{A}.\)
Power dissipation in the resistor is: \(P = I_\text{rms}^2 R = 1^2 \times 4 = 4 \, \text{W}.\)
Draw the plots showing the variation of magnetic flux φ linked with the loop with time t and variation of induced emf E with time t. Mark the relevant values of E, φ and t on the graphs.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: