The impedance $Z$ of the circuit is:
\(Z = \sqrt{R^2 + X_C^2} = \sqrt{4^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \, \Omega.\)
The RMS voltage is:
\(V_\text{rms} = \frac{V_\text{peak}}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}} = 8 \, \text{V}.\)
The RMS current is: \(I_\text{rms} = \frac{V_\text{rms}}{Z} = \frac{8}{8} = 1 \, \text{A}.\)
Power dissipation in the resistor is: \(P = I_\text{rms}^2 R = 1^2 \times 4 = 4 \, \text{W}.\)
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]