To remove a neutron from \( ^{13}_6C \), the nuclear reaction can be represented as:
\(^{13}_6C \rightarrow ^{12}_6C + \text{neutron}.\)
The mass defect \(\Delta m\) is given by:
\(\Delta m = \left(12.000000 + 1.008665\right) - 13.003354 = -0.00531 \, \text{u}.\)
The energy required for this process is calculated using:
\(E = \Delta m \times 931.5 \, \text{MeV/u}.\)
Substituting values:
\(E = 0.00531 \times 931.5 \approx 4.95 \, \text{MeV}.\)
The Correct answer is: 4.95 MeV
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given: