To remove a neutron from \( ^{13}_6C \), the nuclear reaction can be represented as:
\(^{13}_6C \rightarrow ^{12}_6C + \text{neutron}.\)
The mass defect \(\Delta m\) is given by:
\(\Delta m = \left(12.000000 + 1.008665\right) - 13.003354 = -0.00531 \, \text{u}.\)
The energy required for this process is calculated using:
\(E = \Delta m \times 931.5 \, \text{MeV/u}.\)
Substituting values:
\(E = 0.00531 \times 931.5 \approx 4.95 \, \text{MeV}.\)
The Correct answer is: 4.95 MeV
Match the LIST-I with LIST-II
LIST-I (Type of decay in Radioactivity) | LIST-II (Reason for stability) | ||
---|---|---|---|
A. | Alpha decay | III. | Nucleus is mostly heavier than Pb (Z=82) |
B. | Beta negative decay | IV. | Nucleus has too many neutrons relative to the number of protons |
C. | Gamma decay | I. | Nucleus has excess energy in an excited state |
D. | Positron Emission | II. | Nucleus has too many protons relative to the number of neutrons |
Choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: