To determine the energy required to remove a neutron from $_{6}^{13}C$, we need to calculate the difference in binding energy between the isotopes $_{6}^{12}C$ and $_{6}^{13}C$. Here are the steps and calculations:
Therefore, the energy required to remove a neutron from $_{6}^{13}C$ is 4.95 MeV.
To remove a neutron from \( ^{13}_6C \), the nuclear reaction can be represented as:
\(^{13}_6C \rightarrow ^{12}_6C + \text{neutron}.\)
The mass defect \(\Delta m\) is given by:
\(\Delta m = \left(12.000000 + 1.008665\right) - 13.003354 = -0.00531 \, \text{u}.\)
The energy required for this process is calculated using:
\(E = \Delta m \times 931.5 \, \text{MeV/u}.\)
Substituting values:
\(E = 0.00531 \times 931.5 \approx 4.95 \, \text{MeV}.\)
The Correct answer is: 4.95 MeV
A small bob A of mass m is attached to a massless rigid rod of length 1 m pivoted at point P and kept at an angle of 60° with vertical. At 1 m below P, bob B is kept on a smooth surface. If bob B just manages to complete the circular path of radius R after being hit elastically by A, then radius R is_______ m :
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.