To solve the given problem, we start by analyzing the condition \(\vec{b} \times \vec{a} = \vec{c} \times \vec{a}\). Given the vectors: \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\), \(\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}\), and \(\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}\), the condition implies that \((\vec{b} - \vec{c}) \times \vec{a} = \vec{0}\). This means \(\vec{b} - \vec{c}\) is parallel to \(\vec{a}\).
Calculating \(\vec{b} - \vec{c}\):
\(\vec{b} - \vec{c} = (-1 - 4)\hat{i} + (-8 - c_2)\hat{j} + (2 - c_3)\hat{k} = -5\hat{i} + (-8 - c_2)\hat{j} + (2 - c_3)\hat{k}\).
Since \(\vec{b} - \vec{c}\) is parallel to \(\vec{a}\), it must be a scalar multiple: \(-5\hat{i} + (-8 - c_2)\hat{j} + (2 - c_3)\hat{k} = \lambda(\hat{i} + \hat{j} + \hat{k})\).
Equating components, we get:
- \(-5 = \lambda\)
- \(-8 - c_2 = \lambda\)
- \(2 - c_3 = \lambda\)
Solving these equations:
- From \(-5 = \lambda\), we have \(\lambda = -5\).
- Plugging \(\lambda = -5\) into \(-8 - c_2 = \lambda\):
\(-8 - c_2 = -5 \Rightarrow c_2 = -3\).
- Plugging \(\lambda = -5\) into \(2 - c_3 = \lambda\):
\(2 - c_3 = -5 \Rightarrow c_3 = 7\).
Thus, \(\vec{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}\).
Next, consider the angle \(\theta\) between \(\vec{c}\) and \(3\hat{i} + 4\hat{j} + \hat{k}\).
The cosine of the angle is given by the formula:
\[\cos \theta = \frac{\vec{c} \cdot (3\hat{i} + 4\hat{j} + \hat{k})}{|\vec{c}||3\hat{i} + 4\hat{j} + \hat{k}|}\]
Calculating the dot product \(\vec{c} \cdot (3\hat{i} + 4\hat{j} + \hat{k})\):
\(= (4 \cdot 3) + (-3 \cdot 4) + (7 \cdot 1) = 12 - 12 + 7 = 7\).
Finding the magnitudes:
- \(|\vec{c}| = \sqrt{4^2 + (-3)^2 + 7^2} = \sqrt{16 + 9 + 49} = \sqrt{74}\).
- \(|3\hat{i} + 4\hat{j} + \hat{k}| = \sqrt{3^2 + 4^2 + 1^2} = \sqrt{9 + 16 + 1} = \sqrt{26}\).
Thus, \(\cos \theta = \frac{7}{\sqrt{74} \cdot \sqrt{26}} = \frac{7}{\sqrt{1924}}\).
Using \(\cos^2 \theta + \sin^2 \theta = 1\), find \(\sin^2 \theta\):
\(\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{7^2}{1924}\right) = 1 - \frac{49}{1924} = \frac{1924 - 49}{1924} = \frac{1875}{1924}\).
Then calculate \(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\):
\(\tan^2 \theta = \frac{\frac{1875}{1924}}{\frac{49}{1924}} = \frac{1875}{49} \approx 38.2653\).
The greatest integer less than or equal to \(\tan^2 \theta\) is \(38\), which matches the expected range (38,38).
Calculate $\vec{b} \times \vec{a}$:
\(\vec{b} \times \vec{a}\) = \(\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ -1 & -8 & 21 \ 1 & 1 & 1 \end{vmatrix} = -10\hat{i} + 3\hat{j} + 7\hat{k}\)
Since \(\vec{b} \times \vec{a} = \vec{c} \times \vec{a},\) we have:
$-10\hat{i} + 3\hat{j} + 7\hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ c_1 & c_2 & c_3 \ 1 & 1 & 1 \end{vmatrix}$
Expanding the determinant, we get:
$-10\hat{i} + 3\hat{j} + 7\hat{k} = (c_2 - c_3)\hat{i} - (c_1 - c_3)\hat{j} + (c_1 - c_2)\hat{k}$
Comparing the coefficients, we get:
$c_2 - c_3 = -10$
$-c_1 + c_3 = -3$
$c_1 - c_2 = 7$
Solving these equations, we find:
$c_2 = -3$
$c_3 = 7$
$c_1 = 4$
So, $\vec{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}$.
Let $\theta$ be the angle between the two vectors. We can use the dot product formula:
$(3\hat{i} + 4\hat{j} + \hat{k}) \cdot \vec{c} = |\vec{c}||3\hat{i} + 4\hat{j} + \hat{k}| \cos \theta$
Calculating the dot product and magnitudes:
$(4,-3,7) \cdot (3,4,1) = \sqrt{74}\sqrt{26} \cos \theta$
Simplifying:
$12 - 12 + 7 = \sqrt{74}\sqrt{26} \cos \theta$
$7 = \sqrt{74}\sqrt{26} \cos \theta$
Solving for $\cos \theta$:
$\cos \theta = \frac{7}{\sqrt{74}\sqrt{26}}$
Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, we can find $\sin \theta$:
$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{49}{1924}} = \frac{\sqrt{1875}}{1924}$
Now, we can calculate $\tan^2 \theta$:
$\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1875}{49}$
The greatest integer less than or equal to $\frac{1875}{49}$ is 38.
Therefore, the correct answer is 38.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 