Given:
- Distance between A and B = \(80 \, \text{m}\),
- \(t = 2 \, \text{s}\),
- \(g = 10 \, \text{m/s}^2\).
Using the equation of motion:
\(s = ut + \frac{1}{2}gt^2\)
For motion from A to B:
\(-80 = v_1 t - \frac{1}{2} g t^2\)
Substituting values:
\(-80 = v_1 \cdot 2 - \frac{1}{2} \cdot 10 \cdot 2^2\)
\(-80 = 2v_1 - 20\)
\(-60 = 2v_1 \implies v_1 = -30 \, \text{m/s}.\)
For motion from 0 to A:
Using the equation:
\(v_1^2 = u^2 + 2gS\)
\(30^2 = 0 + 2 \cdot 10 \cdot S\)
\(900 = 20S \implies S = 45 \, \text{m}.\)
The Correct answer is: 45 m
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
If the input frequency is 50 Hz, the output frequency of a full wave rectifier is: