Given:
- Distance between A and B = \(80 \, \text{m}\),
- \(t = 2 \, \text{s}\),
- \(g = 10 \, \text{m/s}^2\).
Using the equation of motion:
\(s = ut + \frac{1}{2}gt^2\)
For motion from A to B:
\(-80 = v_1 t - \frac{1}{2} g t^2\)
Substituting values:
\(-80 = v_1 \cdot 2 - \frac{1}{2} \cdot 10 \cdot 2^2\)
\(-80 = 2v_1 - 20\)
\(-60 = 2v_1 \implies v_1 = -30 \, \text{m/s}.\)
For motion from 0 to A:
Using the equation:
\(v_1^2 = u^2 + 2gS\)
\(30^2 = 0 + 2 \cdot 10 \cdot S\)
\(900 = 20S \implies S = 45 \, \text{m}.\)
The Correct answer is: 45 m
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: