Given:
- Distance between A and B = \(80 \, \text{m}\),
- \(t = 2 \, \text{s}\),
- \(g = 10 \, \text{m/s}^2\).
Using the equation of motion:
\(s = ut + \frac{1}{2}gt^2\)
For motion from A to B:
\(-80 = v_1 t - \frac{1}{2} g t^2\)
Substituting values:
\(-80 = v_1 \cdot 2 - \frac{1}{2} \cdot 10 \cdot 2^2\)
\(-80 = 2v_1 - 20\)
\(-60 = 2v_1 \implies v_1 = -30 \, \text{m/s}.\)
For motion from 0 to A:
Using the equation:
\(v_1^2 = u^2 + 2gS\)
\(30^2 = 0 + 2 \cdot 10 \cdot S\)
\(900 = 20S \implies S = 45 \, \text{m}.\)
The Correct answer is: 45 m
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).