Let the point \( A = (2, 3) \) and the line \( 2x - 3y + 28 = 0 \). We want to find the distance from \( A \) to this line, measured parallel to the line \( \sqrt{3}x - y + 1 = 0 \).
Step 1. Write point \( P \) in terms of parametric coordinates along the direction of \( \sqrt{3}x - y + 1 = 0 \):
The direction ratios of this line are \( \cos\theta = \sqrt{3} \) and \( \sin\theta = 1 \), so the point \( P \) can be written as:
\(P \left( 2 + \frac{r\sqrt{3}}{2}, 3 + \frac{r}{2} \right)\)
Step 2. Condition for \( P \) to lie on the line \( 2x - 3y + 28 = 0 \): Substitute \( P \) into the equation \( 2x - 3y + 28 = 0 \):
\(2 \left( 2 + \frac{r\sqrt{3}}{2} \right) - 3 \left( 3 + \frac{r}{2} \right) + 28 = 0\)
Step 3. Simplifying, we get:
\(4 + r\sqrt{3} - 9 - \frac{3r}{2} + 28 = 0\)
\(r = 4 + 6\sqrt{3}\)
Thus, the required distance is .
The Correct Answer is:\( 4 + 6\sqrt{3} \)
The shaded region in the Venn diagram represents
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: