Let the point \( A = (2, 3) \) and the line \( 2x - 3y + 28 = 0 \). We want to find the distance from \( A \) to this line, measured parallel to the line \( \sqrt{3}x - y + 1 = 0 \).
Step 1. Write point \( P \) in terms of parametric coordinates along the direction of \( \sqrt{3}x - y + 1 = 0 \):
The direction ratios of this line are \( \cos\theta = \sqrt{3} \) and \( \sin\theta = 1 \), so the point \( P \) can be written as:
\(P \left( 2 + \frac{r\sqrt{3}}{2}, 3 + \frac{r}{2} \right)\)
Step 2. Condition for \( P \) to lie on the line \( 2x - 3y + 28 = 0 \): Substitute \( P \) into the equation \( 2x - 3y + 28 = 0 \):
\(2 \left( 2 + \frac{r\sqrt{3}}{2} \right) - 3 \left( 3 + \frac{r}{2} \right) + 28 = 0\)
Step 3. Simplifying, we get:
\(4 + r\sqrt{3} - 9 - \frac{3r}{2} + 28 = 0\)
\(r = 4 + 6\sqrt{3}\)
Thus, the required distance is .
The Correct Answer is:\( 4 + 6\sqrt{3} \)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.