Given:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
and
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
We need to find the value of \( a \cdot b^2 \).
Step 1. Finding \( a \): Consider:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
Rationalizing the numerator:
\(a = \lim_{x \to 0} \frac{\left( \sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2} \right) \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
This gives:
\(a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
Approximating \( \sqrt{1 + x^4} \approx 1 + \frac{x^4}{2} \) as \( x \to 0 \):
\(a = \lim_{x \to 0} \frac{\frac{x^4}{2}}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \frac{1}{4\sqrt{2}}\)
Step 2. Finding \( b \): Consider:
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
Rationalizing the denominator:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{2 - (1 + \cos x)}\)
Simplifying:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{1 - \cos x}\)
Using \( \sin^2 x = 1 - \cos^2 x \) and \( \lim_{x \to 0} \cos x = 1 \):
\(b = 2 \left( \sqrt{2 + \sqrt{1 + \cos x}} \right) = 2 (\sqrt{2 + \sqrt{2}}) = 4\sqrt{2}\)
Step 3. Calculating \( a \cdot b^2 \):
\(a \cdot b^2 = \frac{1}{4\sqrt{2}} \cdot (4\sqrt{2})^2 = 32\)
Answer: \((2) \, 32\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: