To find the value of \( ab^3 \) where: \(a = \lim_{{x \to 0}} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\) and \(b = \lim_{{x \to 0}} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\), we will calculate each separately and then find their product.
We start by simplifying the expression for \( a \):
Using the binomial expansion for small \( x \), \(\sqrt{1 + u} \approx 1 + \frac{u}{2}\) when \( u \) is close to 0.
Let: \(\sqrt{1 + x^4} = 1 + \frac{x^4}{2} + \frac{x^8}{8} + \ldots \Rightarrow \sqrt{1 + \sqrt{1 + x^4}} \approx \sqrt{1 + \left(1 + \frac{x^4}{2}\right)} \approx \sqrt{2 + \frac{x^4}{2}} \approx \sqrt{2} + \frac{1}{4\sqrt{2}}x^4\)
Substitute this in the limit expression:
\(a = \lim_{{x \to 0}} \frac{\left(\sqrt{2} + \frac{1}{4\sqrt{2}}x^4\right) - \sqrt{2}}{x^4} = \frac{1}{4\sqrt{2}}\)
Now simplify and compute the expression for \( b \):
Using trigonometric identities:
\(\cos x \approx 1 - \frac{x^2}{2}\) for small \( x \).
\(\sqrt{1 + \cos x} \approx \sqrt{2} - \frac{x^2}{2\sqrt{2}}\).
So the limit now becomes:
\(b = \lim_{{x \to 0}} \frac{\sin^2 x}{\left(\frac{x^2}{2\sqrt{2}}\right)} = \lim_{{x \to 0}} \frac{x^2}{\left(\frac{x^2}{2\sqrt{2}}\right)} = 2\sqrt{2}\).
We now have:
\(a = \frac{1}{4\sqrt{2}}, \, b = 2\sqrt{2}\)
Calculate \( ab^3 \):
\(ab^3 = \left(\frac{1}{4\sqrt{2}}\right) \cdot (2\sqrt{2})^3\)
\(= \frac{1}{4\sqrt{2}} \cdot 8\sqrt{2} = \left(\frac{1}{4\sqrt{2}}\right) \cdot 8 \cdot \sqrt{2} = 32\)
Therefore, the value of \(ab^3\) is 32.
Given:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
and
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
We need to find the value of \( a \cdot b^2 \).
Step 1. Finding \( a \): Consider:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
Rationalizing the numerator:
\(a = \lim_{x \to 0} \frac{\left( \sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2} \right) \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
This gives:
\(a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
Approximating \( \sqrt{1 + x^4} \approx 1 + \frac{x^4}{2} \) as \( x \to 0 \):
\(a = \lim_{x \to 0} \frac{\frac{x^4}{2}}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \frac{1}{4\sqrt{2}}\)
Step 2. Finding \( b \): Consider:
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
Rationalizing the denominator:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{2 - (1 + \cos x)}\)
Simplifying:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{1 - \cos x}\)
Using \( \sin^2 x = 1 - \cos^2 x \) and \( \lim_{x \to 0} \cos x = 1 \):
\(b = 2 \left( \sqrt{2 + \sqrt{1 + \cos x}} \right) = 2 (\sqrt{2 + \sqrt{2}}) = 4\sqrt{2}\)
Step 3. Calculating \( a \cdot b^2 \):
\(a \cdot b^2 = \frac{1}{4\sqrt{2}} \cdot (4\sqrt{2})^2 = 32\)
Answer: \((2) \, 32\)
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 