To find the value of \( ab^3 \) where: \(a = \lim_{{x \to 0}} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\) and \(b = \lim_{{x \to 0}} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\), we will calculate each separately and then find their product.
We start by simplifying the expression for \( a \):
Using the binomial expansion for small \( x \), \(\sqrt{1 + u} \approx 1 + \frac{u}{2}\) when \( u \) is close to 0.
Let: \(\sqrt{1 + x^4} = 1 + \frac{x^4}{2} + \frac{x^8}{8} + \ldots \Rightarrow \sqrt{1 + \sqrt{1 + x^4}} \approx \sqrt{1 + \left(1 + \frac{x^4}{2}\right)} \approx \sqrt{2 + \frac{x^4}{2}} \approx \sqrt{2} + \frac{1}{4\sqrt{2}}x^4\)
Substitute this in the limit expression:
\(a = \lim_{{x \to 0}} \frac{\left(\sqrt{2} + \frac{1}{4\sqrt{2}}x^4\right) - \sqrt{2}}{x^4} = \frac{1}{4\sqrt{2}}\)
Now simplify and compute the expression for \( b \):
Using trigonometric identities:
\(\cos x \approx 1 - \frac{x^2}{2}\) for small \( x \).
\(\sqrt{1 + \cos x} \approx \sqrt{2} - \frac{x^2}{2\sqrt{2}}\).
So the limit now becomes:
\(b = \lim_{{x \to 0}} \frac{\sin^2 x}{\left(\frac{x^2}{2\sqrt{2}}\right)} = \lim_{{x \to 0}} \frac{x^2}{\left(\frac{x^2}{2\sqrt{2}}\right)} = 2\sqrt{2}\).
We now have:
\(a = \frac{1}{4\sqrt{2}}, \, b = 2\sqrt{2}\)
Calculate \( ab^3 \):
\(ab^3 = \left(\frac{1}{4\sqrt{2}}\right) \cdot (2\sqrt{2})^3\)
\(= \frac{1}{4\sqrt{2}} \cdot 8\sqrt{2} = \left(\frac{1}{4\sqrt{2}}\right) \cdot 8 \cdot \sqrt{2} = 32\)
Therefore, the value of \(ab^3\) is 32.
Given:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
and
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
We need to find the value of \( a \cdot b^2 \).
Step 1. Finding \( a \): Consider:
\(a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}\)
Rationalizing the numerator:
\(a = \lim_{x \to 0} \frac{\left( \sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2} \right) \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
This gives:
\(a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}\)
Approximating \( \sqrt{1 + x^4} \approx 1 + \frac{x^4}{2} \) as \( x \to 0 \):
\(a = \lim_{x \to 0} \frac{\frac{x^4}{2}}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \frac{1}{4\sqrt{2}}\)
Step 2. Finding \( b \): Consider:
\(b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}\)
Rationalizing the denominator:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{2 - (1 + \cos x)}\)
Simplifying:
\(b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{1 - \cos x}\)
Using \( \sin^2 x = 1 - \cos^2 x \) and \( \lim_{x \to 0} \cos x = 1 \):
\(b = 2 \left( \sqrt{2 + \sqrt{1 + \cos x}} \right) = 2 (\sqrt{2 + \sqrt{2}}) = 4\sqrt{2}\)
Step 3. Calculating \( a \cdot b^2 \):
\(a \cdot b^2 = \frac{1}{4\sqrt{2}} \cdot (4\sqrt{2})^2 = 32\)
Answer: \((2) \, 32\)
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero.
In the light of the above statements, choose the most appropriate answer from the options given below: