Let the potentials at points A, B, and C be \( x \), \( y \), and \( 0 \), respectively.
Applying Kirchhoff’s Current Law (KCL) at node B:
\[ \frac{y - 5}{2} + \frac{y - 0}{2} + \frac{y - x + 10}{1} = 0 \] \[ \Rightarrow 4y - 2x + 15 = 0 \quad \text{(i)} \]
Applying KCL at node A:
\[ \frac{x - 5}{4} + \frac{x - 0}{4} + \frac{x - 10 - y}{1} = 0 \] \[ \Rightarrow 6x - 4y - 45 = 0 \quad \text{(ii)} \]
Solving equations (i) and (ii):
From (i): \( y = \frac{15}{4}x - \frac{15}{4} \)
Substituting in (ii): \( x = \frac{15}{2}, \, y = 0 \)
The current through the \( 1 \, \Omega \) resistor is:
\[ i = \frac{y - x + 10}{1} = \frac{0 - 7.5 + 10}{1} = 2.5 \, \text{A}. \]
Therefore: \[ i = \frac{n}{10}, \quad n = 25. \]
Final Answer: \( n = 25 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: