Let the potentials at points A, B, and C be \( x \), \( y \), and \( 0 \), respectively.
Applying Kirchhoff’s Current Law (KCL) at node B:
\[ \frac{y - 5}{2} + \frac{y - 0}{2} + \frac{y - x + 10}{1} = 0 \] \[ \Rightarrow 4y - 2x + 15 = 0 \quad \text{(i)} \]
Applying KCL at node A:
\[ \frac{x - 5}{4} + \frac{x - 0}{4} + \frac{x - 10 - y}{1} = 0 \] \[ \Rightarrow 6x - 4y - 45 = 0 \quad \text{(ii)} \]
Solving equations (i) and (ii):
From (i): \( y = \frac{15}{4}x - \frac{15}{4} \)
Substituting in (ii): \( x = \frac{15}{2}, \, y = 0 \)
The current through the \( 1 \, \Omega \) resistor is:
\[ i = \frac{y - x + 10}{1} = \frac{0 - 7.5 + 10}{1} = 2.5 \, \text{A}. \]
Therefore: \[ i = \frac{n}{10}, \quad n = 25. \]
Final Answer: \( n = 25 \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: