Let \( \alpha, \beta; \, \alpha > \beta \), be the roots of the equation $$ x^2 - \sqrt{2}x - \sqrt{3} = 0. $$ Let \( P_n = \alpha^n - \beta^n, \, n \in \mathbb{N} \). Then $$ \left( 11\sqrt{3} - 10\sqrt{2} \right) P_{10} + \left( 11\sqrt{2} + 10 \right) P_{11} - 11P_{12} $$ is equal to:
Let $$ B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} $$ and $A$ be a $2 \times 2$ matrix such that $$ AB^{-1} = A^{-1}. $$ If $BCB^{-1} = A$ and $$ C^4 + \alpha C^2 + \beta I = O, $$ then $2\beta - \alpha$ is equal to:
\(\lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \quad \text{is equal to:}\)