Let:
\[ f(x) = \log_e \left( x + \sqrt{x^2 + 1} \right) .\]
Use substitution to simplify the integral. Define \( u = x + \sqrt{x^2 + 1} \), so:
\[ du = \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) dx = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} dx = \frac{u}{\sqrt{x^2 + 1}} dx. \]
Squaring \( u \), we find:
\[ u^2 = x^2 + 1 + 2x \sqrt{x^2 + 1}. \]
Rearrange:
\[ x \sqrt{x^2 + 1} = \frac{u^2 - x^2 - 1}{2}. \]
From symmetry and the bounds \( x \in [-1, 2] \), evaluate \( u \) at \( x = -1 \) and \( x = 2 \):
At \( x = -1 \), \( u = -1 + \sqrt{2} \).
At \( x = 2 \), \( u = 2 + \sqrt{5} \).
Substitute back into the integral and compute:
\[ \int_{-1}^{2} \log_e \left( x + \sqrt{x^2 + 1} \right) dx = \sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right). \]
Final Answer:
\[ \boxed{\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)} \]