To solve the integral \(\int_{-1}^{2} \log_e \left( x + \sqrt{x^2 + 1} \right) \, dx\), we can use the properties of logarithms and integration by parts. Let's break down the steps:
By using the hyperbolic identities:
Change the limits from \(x\) to \(t\) conditions:
Evaluate the integral:
Calculate the evaluated boundaries:
Compute the values using the property \(\text{arcsinh}(x) = \log_e(x + \sqrt{x^2 + 1})\):
Thus:
Put the values back to finalize the computation:
Thus, the value of the integral is \(\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right).\)
Let:
\[ f(x) = \log_e \left( x + \sqrt{x^2 + 1} \right) .\]
Use substitution to simplify the integral. Define \( u = x + \sqrt{x^2 + 1} \), so:
\[ du = \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) dx = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} dx = \frac{u}{\sqrt{x^2 + 1}} dx. \]
Squaring \( u \), we find:
\[ u^2 = x^2 + 1 + 2x \sqrt{x^2 + 1}. \]
Rearrange:
\[ x \sqrt{x^2 + 1} = \frac{u^2 - x^2 - 1}{2}. \]
From symmetry and the bounds \( x \in [-1, 2] \), evaluate \( u \) at \( x = -1 \) and \( x = 2 \):
At \( x = -1 \), \( u = -1 + \sqrt{2} \).
At \( x = 2 \), \( u = 2 + \sqrt{5} \).
Substitute back into the integral and compute:
\[ \int_{-1}^{2} \log_e \left( x + \sqrt{x^2 + 1} \right) dx = \sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right). \]
Final Answer:
\[ \boxed{\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)} \]
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
