The variance formula for a frequency distribution is:
\[ \text{Variance} = \frac{\sum fx^2}{\sum f} - \left( \frac{\sum fx}{\sum f} \right)^2. \]
From the table, we calculate \(\sum f\), \(\sum fx\), and \(\sum fx^2\):
\(x\) | $f$ | \(f \times x\) | \(f \times x^2\) |
---|---|---|---|
c | $2$ | 2c | $2c^2$ |
2c | $1$ | 2c | $4c^2$ |
3c | $1$ | 3c | $9c^2$ |
4c | $1$ | 4c | $16c^2$ |
5c | $1$ | 5c | $25c^2$ |
6c | $1$ | 6c | $36c^2$ |
Total | 7 | 22c | $92c^2$ |
Step 1: Variance formula. Substitute into the formula:
\[ \text{Variance} = \frac{\sum fx^2}{\sum f} - \left( \frac{\sum fx}{\sum f} \right)^2. \]
Substitute \(\sum f = 7\), \(\sum fx = 22c\), and \(\sum fx^2 = 92c^2\):
\[ \text{Variance} = \frac{92c^2}{7} - \left( \frac{22c}{7} \right)^2. \]
Simplify:
\[ \text{Variance} = \frac{92c^2}{7} - \frac{(22c)^2}{7^2}. \] \[ \text{Variance} = \frac{92c^2}{7} - \frac{484c^2}{49}. \]
Take the LCM of 7 and 49:
\[ \text{Variance} = \frac{(92 \cdot 7)c^2 - 484c^2}{49}. \] \[ \text{Variance} = \frac{644c^2 - 484c^2}{49}. \] \[ \text{Variance} = \frac{160c^2}{49}. \]
Step 2: Set variance to 160. The problem states that the variance is 160. Therefore:
\[ \frac{160c^2}{49} = 160. \]
Simplify:
\[ 160c^2 = 160 \cdot 49. \] \[ c^2 = 49 \implies c = 7. \]
Final Answer: \(c = 7\)
List-I | List-II |
---|---|
(A) Distribution of a sample leads to becoming a normal distribution | (I) Central Limit Theorem |
(B) Some subset of the entire population | (II) Hypothesis |
(C) Population mean | (III) Sample |
(D) Some assumptions about the population | (IV) Parameter |