Given Reactions:
Correct Answer: The correct answer is 3.
\[ \text{CH}_3\text{COONa} \longrightarrow \cdot \text{CH}_3 \]
\[ \text{C}_2\text{H}_5\text{COONa} \longrightarrow \cdot \text{C}_2\text{H}_5 \]
\[ 2 \cdot \text{C}_2\text{H}_5 \longrightarrow \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \]
\[ 2 \cdot \text{CH}_3 \longrightarrow \text{CH}_3 - \text{CH}_3 \]
\[ \cdot \text{CH}_3 + \cdot \text{C}_2\text{H}_5 \longrightarrow \text{CH}_3 - \text{CH}_2 - \text{CH}_3 \]
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]
