\[ \text{CH}_3\text{COONa} \longrightarrow \cdot \text{CH}_3 \]
\[ \text{C}_2\text{H}_5\text{COONa} \longrightarrow \cdot \text{C}_2\text{H}_5 \]
\[ 2 \cdot \text{C}_2\text{H}_5 \longrightarrow \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \]
\[ 2 \cdot \text{CH}_3 \longrightarrow \text{CH}_3 - \text{CH}_3 \]
\[ \cdot \text{CH}_3 + \cdot \text{C}_2\text{H}_5 \longrightarrow \text{CH}_3 - \text{CH}_2 - \text{CH}_3 \]
Complete the following reactions by writing the structure of the main products:
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $