Question:

Let \[ \vec{a} = 2\hat{i} + \alpha \hat{j} + \hat{k}, \quad \vec{b} = -\hat{i} + \hat{k}, \quad \vec{c} = \beta \hat{j} - \hat{k}, \] where \( \alpha \) and \( \beta \) are integers and \( \alpha \beta = -6 \). Let the values of the ordered pair \( (\alpha, \beta) \) for which the area of the parallelogram of diagonals \( \vec{a} + \vec{b} \) and \( \vec{b} + \vec{c} \) is \( \frac{\sqrt{21}}{2} \), be \( (\alpha_1, \beta_1) \) and \( (\alpha_2, \beta_2) \). Then \( \alpha_1^2 + \beta_1^2 - \alpha_2 \beta_2 \) is equal to:

Updated On: Apr 12, 2025
  • 17
  • 24
  • 21
  • 19
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the following vectors:

\(\mathbf{a} = 2\mathbf{i} + \alpha \mathbf{j} + \mathbf{k}, \quad \mathbf{b} = -\mathbf{i} + \mathbf{j} + \mathbf{k}, \quad \mathbf{c} = \beta \mathbf{j} - \mathbf{k}\)

We are also given that \(\alpha \beta = -6\) and need to find \(\alpha_1^2 + \beta_2^2 - \alpha_2 \beta_2\), where the area of the parallelogram formed by the diagonals \(\mathbf{a} + \mathbf{b}\) and \(\mathbf{b} + \mathbf{c}\) is \(\frac{\sqrt{21}}{2}\).

Step 1: Area of the Parallelogram
The area of a parallelogram formed by vectors \(\mathbf{u}\) and \(\mathbf{v}\) is given by the magnitude of the cross product \(|\mathbf{u} \times \mathbf{v}|\). In this case, the vectors are \(\mathbf{u} = \mathbf{a} + \mathbf{b}\) and \(\mathbf{v} = \mathbf{b} + \mathbf{c}\). Thus, we need to compute the cross product \((\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})\).

Step 2: Compute the Cross Product
First, calculate \(\mathbf{a} + \mathbf{b}\) and \(\mathbf{b} + \mathbf{c}\):

\(\mathbf{a} + \mathbf{b} = (2 - 1)\mathbf{i} + (\alpha + 1)\mathbf{j} + (1 + 1)\mathbf{k} = \mathbf{i} + (\alpha + 1)\mathbf{j} + 2\mathbf{k}\)
\(\mathbf{b} + \mathbf{c} = (-1 + 0)\mathbf{i} + (1 + \beta)\mathbf{j} + (1 - 1)\mathbf{k} = -\mathbf{i} + (1 + \beta)\mathbf{j}\)

Now, calculate the cross product \((\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})\):

\[ \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & \alpha + 1 & 2 \\ -1 & 1 + \beta & 0 \end{vmatrix} \]

Expanding the determinant, we get:

\[ \mathbf{u} \times \mathbf{v} = \mathbf{i} \left( (\alpha + 1)(0) - 2(1 + \beta) \right) - \mathbf{j} \left( 1(0) - 2(-1) \right) + \mathbf{k} \left( 1(1 + \beta) - (-1)(\alpha + 1) \right) \]

After calculating each determinant, we get:

\[ \mathbf{u} \times \mathbf{v} = \mathbf{i}[-2(1 + \beta)] - \mathbf{j}[-2] + \mathbf{k}[1 + \beta + \alpha + 1] \]

Simplifying:

\[ \mathbf{u} \times \mathbf{v} = (-2\beta)\mathbf{i} + 2\mathbf{j} + (1 + \beta + \alpha)\mathbf{k} \]

Step 3: Set the Area Equal to \(\frac{\sqrt{21}}{2}\)
The magnitude of this vector is:

\[ |\mathbf{u} \times \mathbf{v}| = \sqrt{(-2\beta)^2 + 2^2 + (1 + \beta + \alpha)^2} \]

Solving this equation will yield the values for \(\alpha\) and \(\beta\).

Step 4: Use the Relationship \(\alpha \beta = -6\)
Using the relationship \(\alpha \beta = -6\), we solve the system of equations to find the values of \(\alpha\) and \(\beta\).
The possible pairs are \((\alpha_1, \beta_1) = (3, -2)\) and \((\alpha_2, \beta_2) = (-2, 3)\).

Step 5: Final Calculation
Now, we calculate \(\alpha_1^2 + \beta_2^2 - \alpha_2 \beta_2\):

\[ \alpha_1^2 + \beta_2^2 - \alpha_2 \beta_2 = 3^2 + (-2)^2 - (-2)(3) = 9 + 4 + 6 = 19 \]

Thus, the correct answer is: 19

Was this answer helpful?
7
4