The translational kinetic energy of the molecules of an ideal gas is directly proportional to the temperature in Kelvin. Thus, we have the relation:
\[ K \propto T. \]
Given that the initial temperature is \( T_1 = -78^\circ \text{C} = 195 \, \text{K} \), and the final temperature is \( T_2 \) when the kinetic energy becomes \( 2K \), we know:
\[ \frac{T_2}{T_1} = 2. \]
Thus, the new temperature is:
\[ T_2 = 2 \times 195 = 390 \, \text{K}. \]
Converting back to Celsius:
\[ T_2 = 390 - 273 = 117^\circ \text{C}. \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: