Let \( L = \lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \).
Rewrite \( (1 + 2x)^{\frac{1}{2x}} \) using logarithms:
\[ (1 + 2x)^{\frac{1}{2x}} = e^{\frac{\ln(1 + 2x)}{2x}}. \]
For small \( x \), use the approximation \( \ln(1 + 2x) \approx 2x \). Thus:
\[ \frac{\ln(1 + 2x)}{2x} \approx 1, \] so \( (1 + 2x)^{\frac{1}{2x}} \approx e^1 = e \).
Expand \( \ln(1 + 2x) \) further using Taylor series:
\[ \ln(1 + 2x) = 2x - 2x^2 + O(x^3), \] so \[ \frac{\ln(1 + 2x)}{2x} = 1 - x + O(x^2). \]
Hence,
\[ (1 + 2x)^{\frac{1}{2x}} = e^{1 - x + O(x^2)} = e \cdot e^{-x} \cdot e^{O(x^2)} \approx e(1 - x + O(x^2)). \]
Subtract from \( e \):
\[ e - (1 + 2x)^{\frac{1}{2x}} \approx e - e(1 - x) = e \cdot x. \]
Divide by \( x \):
\[ \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x} \approx \frac{e \cdot x}{x} = e. \]
Therefore: \[ e. \]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)