Given:
\[ \theta = \cot^{-1} \left( \sqrt{\frac{1 - x}{1 + x}} \right) \]
Therefore:
\[ \cot(\theta) = \sqrt{\frac{1 - x}{1 + x}} \implies \tan(\theta) = \sqrt{\frac{1 + x}{1 - x}} \]
Using the double-angle formula for cosine:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]
Now express \(\sin^2(\theta)\):
\[ \sin^2(\theta) = \frac{1}{1 + \cot^2(\theta)} \]
Substituting \(\cot^2(\theta) = \frac{1 - x}{1 + x}\), we get:
\[ \sin^2(\theta) = \frac{1}{1 + \frac{1 - x}{1 + x}} = \frac{1 + x}{2} \]
Thus:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2 \cdot \frac{1 + x}{2} = -x \]
The integral simplifies to:
\[ \int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx = \int_{1/4}^{3/4} -x dx \]
Evaluate the simplified integral:
\[ \int_{1/4}^{3/4} -x dx = - \int_{1/4}^{3/4} x dx \]
The integral of \(x\) is:
\[ \int x dx = \frac{x^2}{2} \]
Evaluate the limits:
\[ - \left[ \frac{x^2}{2} \right]_{1/4}^{3/4} = - \left( \frac{\left(\frac{3}{4}\right)^2}{2} - \frac{\left(\frac{1}{4}\right)^2}{2} \right) \]
Simplify:
\[ - \left( \frac{9}{32} - \frac{1}{32} \right) = - \frac{8}{32} = -\frac{1}{4} \]
Final Answer:
\[ -\frac{1}{4} \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: