Given:
\[ \theta = \cot^{-1} \left( \sqrt{\frac{1 - x}{1 + x}} \right) \]
Therefore:
\[ \cot(\theta) = \sqrt{\frac{1 - x}{1 + x}} \implies \tan(\theta) = \sqrt{\frac{1 + x}{1 - x}} \]
Using the double-angle formula for cosine:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]
Now express \(\sin^2(\theta)\):
\[ \sin^2(\theta) = \frac{1}{1 + \cot^2(\theta)} \]
Substituting \(\cot^2(\theta) = \frac{1 - x}{1 + x}\), we get:
\[ \sin^2(\theta) = \frac{1}{1 + \frac{1 - x}{1 + x}} = \frac{1 + x}{2} \]
Thus:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2 \cdot \frac{1 + x}{2} = -x \]
The integral simplifies to:
\[ \int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx = \int_{1/4}^{3/4} -x dx \]
Evaluate the simplified integral:
\[ \int_{1/4}^{3/4} -x dx = - \int_{1/4}^{3/4} x dx \]
The integral of \(x\) is:
\[ \int x dx = \frac{x^2}{2} \]
Evaluate the limits:
\[ - \left[ \frac{x^2}{2} \right]_{1/4}^{3/4} = - \left( \frac{\left(\frac{3}{4}\right)^2}{2} - \frac{\left(\frac{1}{4}\right)^2}{2} \right) \]
Simplify:
\[ - \left( \frac{9}{32} - \frac{1}{32} \right) = - \frac{8}{32} = -\frac{1}{4} \]
Final Answer:
\[ -\frac{1}{4} \]
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: