We start with the given integral:
\[ \int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx \]
Let:
\[ \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} = \theta \]
Then,
\[ \cot \theta = \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \Rightarrow \cos \theta = \sqrt{\frac{1 - x}{2}} \]
Now, using the double angle identity for cosine:
\[ \cos(2\theta) = 2\cos^2\theta - 1 \]
Thus, the integral becomes:
\[ \int_{1/4}^{3/4} \cos(2\theta) \, dx = \int_{1/4}^{3/4} (2\cos^2\theta - 1) \, dx \]
Substitute \(\cos^2 \theta = \frac{1 - x}{2}\):
\[ \int_{1/4}^{3/4} \left[ 2\left( \frac{1 - x}{2} \right) - 1 \right] dx = \int_{1/4}^{3/4} [(1 - x) - 1] \, dx = \int_{1/4}^{3/4} (-x) \, dx \]
Now integrate:
\[ \int_{1/4}^{3/4} (-x) \, dx = -\left[ \frac{x^2}{2} \right]_{1/4}^{3/4} \]
Substitute the limits:
\[ = -\frac{1}{2} \left[ \left( \frac{9}{16} \right) - \left( \frac{1}{16} \right) \right] = -\frac{1}{2} \times \frac{8}{16} = -\frac{1}{2} \times \frac{1}{2} = -\frac{1}{4} \]
Therefore, the value of the given integral is:
\[ \boxed{\frac{-1}{4}} \]
Given:
\[ \theta = \cot^{-1} \left( \sqrt{\frac{1 - x}{1 + x}} \right) \]
Therefore:
\[ \cot(\theta) = \sqrt{\frac{1 - x}{1 + x}} \implies \tan(\theta) = \sqrt{\frac{1 + x}{1 - x}} \]
Using the double-angle formula for cosine:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]
Now express \(\sin^2(\theta)\):
\[ \sin^2(\theta) = \frac{1}{1 + \cot^2(\theta)} \]
Substituting \(\cot^2(\theta) = \frac{1 - x}{1 + x}\), we get:
\[ \sin^2(\theta) = \frac{1}{1 + \frac{1 - x}{1 + x}} = \frac{1 + x}{2} \]
Thus:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2 \cdot \frac{1 + x}{2} = -x \]
The integral simplifies to:
\[ \int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx = \int_{1/4}^{3/4} -x dx \]
Evaluate the simplified integral:
\[ \int_{1/4}^{3/4} -x dx = - \int_{1/4}^{3/4} x dx \]
The integral of \(x\) is:
\[ \int x dx = \frac{x^2}{2} \]
Evaluate the limits:
\[ - \left[ \frac{x^2}{2} \right]_{1/4}^{3/4} = - \left( \frac{\left(\frac{3}{4}\right)^2}{2} - \frac{\left(\frac{1}{4}\right)^2}{2} \right) \]
Simplify:
\[ - \left( \frac{9}{32} - \frac{1}{32} \right) = - \frac{8}{32} = -\frac{1}{4} \]
Final Answer:
\[ -\frac{1}{4} \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 