Given:
\[ \theta = \cot^{-1} \left( \sqrt{\frac{1 - x}{1 + x}} \right) \]
Therefore:
\[ \cot(\theta) = \sqrt{\frac{1 - x}{1 + x}} \implies \tan(\theta) = \sqrt{\frac{1 + x}{1 - x}} \]
Using the double-angle formula for cosine:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]
Now express \(\sin^2(\theta)\):
\[ \sin^2(\theta) = \frac{1}{1 + \cot^2(\theta)} \]
Substituting \(\cot^2(\theta) = \frac{1 - x}{1 + x}\), we get:
\[ \sin^2(\theta) = \frac{1}{1 + \frac{1 - x}{1 + x}} = \frac{1 + x}{2} \]
Thus:
\[ \cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2 \cdot \frac{1 + x}{2} = -x \]
The integral simplifies to:
\[ \int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx = \int_{1/4}^{3/4} -x dx \]
Evaluate the simplified integral:
\[ \int_{1/4}^{3/4} -x dx = - \int_{1/4}^{3/4} x dx \]
The integral of \(x\) is:
\[ \int x dx = \frac{x^2}{2} \]
Evaluate the limits:
\[ - \left[ \frac{x^2}{2} \right]_{1/4}^{3/4} = - \left( \frac{\left(\frac{3}{4}\right)^2}{2} - \frac{\left(\frac{1}{4}\right)^2}{2} \right) \]
Simplify:
\[ - \left( \frac{9}{32} - \frac{1}{32} \right) = - \frac{8}{32} = -\frac{1}{4} \]
Final Answer:
\[ -\frac{1}{4} \]
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32